Publications by authors named "Matthew Minton"

Background: The arrival of RNA-seq as a high-throughput method competitive to the established microarray technologies has necessarily driven a need for comparative evaluation. To date, cross-platform comparisons of these technologies have been relatively few in number of platforms analyzed and were typically gene name annotation oriented. Here, we present a more extensive and yet precise assessment to elucidate differences and similarities in performance of numerous aspects including dynamic range, fidelity of raw signal and fold-change with sample titration, and concordance with qRT-PCR (TaqMan).

View Article and Find Full Text PDF

Objective: The nuclear receptor NR1I2 (also called PXR or SXR) is primarily expressed in mouse and human liver and intestines. Direct activation of NR1I2 occurs in response to a range of xenobiotics, which causes the formation of a heterodimer with the RXR receptor. This heterodimer binds to the nuclear receptor response elements of downstream genes such as ABCB1, CYP2C, and CYP3A.

View Article and Find Full Text PDF

Candidate gene pharmacogenetic studies offer a strategy for the rapid assessment of putative predictive markers. As a first step toward studying the pharmacogenetics of cancer chemotherapy, 51 candidate genes from the pathways of antineoplastic agents were resequenced to identify common genetic polymorphisms that might alter therapeutic response or toxicity. Forty DNA samples were screened from each of three population groups: African-Americans, Asian-Americans and European-Americans.

View Article and Find Full Text PDF

Here we report a large, extensively characterized set of single-nucleotide polymorphisms (SNPs) covering the human genome. We determined the allele frequencies of 55,018 SNPs in African Americans, Asians (Japanese-Chinese), and European Americans as part of The SNP Consortium's Allele Frequency Project. A subset of 8333 SNPs was also characterized in Koreans.

View Article and Find Full Text PDF

Human carboxylesterases 1 and 2 (CES1 and CES2) catalyze the hydrolysis of many exogenous compounds. Alterations in carboxylesterase sequences could lead to variability in both the inactivation of drugs and the activation of prodrugs. We resequenced CES1 and CES2 in multiple populations (n = 120) to identify single-nucleotide polymorphisms and confirmed the novel SNPs in healthy European and African individuals (n = 190).

View Article and Find Full Text PDF