Publications by authors named "Matthew Mille"

. To allow the estimation of secondary cancer risks from radiation therapy treatment plans in a comprehensive and user-friendly Monte Carlo (MC) framework..

View Article and Find Full Text PDF

Background And Purpose: Contouring of organs at risk is important for studying health effects following breast radiotherapy. However, manual contouring is time-consuming and subject to variability. The purpose of this study was to develop a deep learning-based method to automatically segment multiple structures on breast radiotherapy planning computed tomography (CT) images.

View Article and Find Full Text PDF

Purpose: The physical properties of protons lower doses to surrounding normal tissues compared with photons, potentially reducing acute and long-term adverse effects, including subsequent cancers. The magnitude of benefit is uncertain, however, and currently based largely on modeling studies. Despite the paucity of directly comparative data, the number of proton centers and patients are expanding exponentially.

View Article and Find Full Text PDF

Three-dimensional printing and casting materials were analyzed by prompt gamma-ray activation analysis (PGAA) to determine their suitability as human tissue surrogates for the fabrication of phantoms for medical imaging and radiation dosimetry applications. Measured elemental compositions and densities of five surrogate materials simulating soft tissue and bone were used to determine radiological properties (x-ray mass attenuation coefficient and electron stopping power). When compared with radiological properties of International Commission on Radiation Units and Measurements (ICRU) materials, it was determined that urethane rubber and PLA plastic yielded the best match for soft tissue, while silicone rubber and urethane resin best simulated the properties of bone.

View Article and Find Full Text PDF

Monte Carlo (MC) methods are considered the gold-standard approach to dose estimation for normal tissues outside the treatment field (out-of-field) in proton therapy. However, the physics of secondary particle production from high-energy protons are uncertain, particularly for secondary neutrons, due to challenges in performing accurate measurements. Instead, various physics models have been developed over the years to reenact these high-energy interactions based on theory.

View Article and Find Full Text PDF

Background: Soft tissue sarcoma is a rare but serious side-effect of radiotherapy to treat breast cancer, and rates are increasing in the USA. We evaluated potential co-factors in two complimentary cohorts of US breast cancer survivors.

Methods: In this retrospective cohort study, we sourced data from the Kaiser Permanente (KP) cohort and the Surveillance, Epidemiology, and End Results (SEER) 13 registries cohort, both in the USA.

View Article and Find Full Text PDF

There is a need for an instantly indicating, easy-to-read, and inexpensive ionizing radiation dosimeter for first responders and members of the general public. One commercially available option is the RADTriage50 TM colorimetric dosimeter. However, existing literature has not adequately addressed the accuracy of RADTriage50 dosimeters at low doses of ionizing radiation (<50 mSv) or the need for methods to quantitatively read the RADTriage50 dosimeters after they are exposed.

View Article and Find Full Text PDF

Purpose: Our purpose was to validate and compare the performance of 4 organ dose reconstruction approaches for historical radiation treatment planning based on 2-dimensional radiographs.

Methods And Materials: We considered 10 patients with Wilms tumor with planning computed tomography images for whom we developed typical historic Wilms tumor radiation treatment plans, using anteroposterior and posteroanterior parallel-opposed 6 MV flank fields, normalized to 14.4 Gy.

View Article and Find Full Text PDF

. We conducted a Monte Carlo study to comprehensively investigate the fetal dose resulting from proton pencil beam scanning (PBS) craniospinal irradiation (CSI) during pregnancy..

View Article and Find Full Text PDF

Background And Purpose: Quantifying radiation dose to cardiac substructures is important for research on the etiology and prevention of complications following radiotherapy; however, segmentation of substructures is challenging. In this study we demonstrate the application of our atlas-based automatic segmentation method to breast cancer radiotherapy plans for generating radiation doses in support of late effects research.

Material And Methods: We applied our segmentation method to contour heart substructures on the computed tomography (CT) images of 70 breast cancer patients who received external photon radiotherapy.

View Article and Find Full Text PDF

For the epidemiological evaluation of long-term side effects of radiotherapy patients, it is important to know the doses to organs and tissues everywhere in the patient. Computed tomography (CT) images of the patients which contain the anatomical information are sometimes available for each treated patient. However, the available CT scans usually cover only the treated volume of the patient including the target and surrounding anatomy.

View Article and Find Full Text PDF

Purpose: To demonstrate an on-demand and nearly automatic method for fabricating tissue-equivalent physical anthropomorphic phantoms for imaging and dosimetry applications using a dual nozzle thermoplastic three-dimensional (3D) printer and two types of plastic.

Methods: Two 3D printing plastics were investigated: (a) Normal polylactic acid (PLA) as a soft tissue simulant and (b) Iron PLA (PLA-Fe), a composite of PLA and iron powder, as a bone simulant. The plastics and geometry of a 1-yr-old computational phantom were combined with a dual extrusion 3D printer to fabricate an anthropomorphic imaging phantom.

View Article and Find Full Text PDF

Monte Carlo (MC) radiation transport methods are used for dose calculation as 'gold standard.' However, the method is computationally time-consuming and thus impractical for normal tissue dose reconstructions for the large number of proton therapy patients required for epidemiologic investigations of late health effects. In the present study, we developed a new dose calculation method for the rapid reconstruction of out-of-field neutron dose to patients undergoing pencil beam scanning (PBS) proton therapy.

View Article and Find Full Text PDF

Background And Purpose: We developed an automatic method to segment cardiac substructures given a radiotherapy planning CT images to support epidemiological studies or clinical trials looking at cardiac disease endpoints after radiotherapy.

Material And Methods: We used a most-similar atlas selection algorithm and 3D deformation combined with 30 detailed cardiac atlases. We cross-validated our method within the atlas library by evaluating geometric comparison metrics and by comparing cardiac doses for simulated breast radiotherapy between manual and automatic contours.

View Article and Find Full Text PDF

Significant efforts such as the Pediatric Proton/Photon Consortium Registry (PPCR) involving multiple proton therapy centers have been made to conduct collaborative studies evaluating outcomes following proton therapy. As a groundwork dosimetry effort for the late effect investigation, we developed a Monte Carlo (MC) model of proton pencil beam scanning (PBS) to estimate organ/tissue doses of pediatric patients at the Maryland Proton Treatment Center (MPTC), one of the proton centers involved in the PPCR. The MC beam modeling was performed using the TOPAS (TOol for PArticle Simulation) MC code and commissioned to match measurement data within 1% for range, and 0.

View Article and Find Full Text PDF

Radiotherapy (RT) treatment planning systems (TPS) are designed for the fast calculation of dose to the tumor bed and nearby organs at risk using x-ray computed tomography (CT) images. However, CT images for a patient are typically available for only a small portion of the body, and in some cases, such as for retrospective epidemiological studies, no images may be available at all. When dose to organs that lie out-of-scan must be estimated, a convenient alternative for the unknown patient anatomy is to use a matching whole-body computational phantom as a surrogate.

View Article and Find Full Text PDF

Purpose: To study the accuracy with which proton stopping power ratio (SPR) can be determined with dual-energy computed tomography (DECT) for small structures and bone-tissue-air interfaces like those found in the head or in the neck.

Methods: Hollow cylindrical polylactic acid (PLA) plugs (3 cm diameter, 5 cm height) were 3D printed containing either one or three septa with thicknesses t  = 0.8, 1.

View Article and Find Full Text PDF

Purpose: This pilot study was done to determine the feasibility and accuracy of University of Florida/National Cancer Institute (UF/NCI) phantoms and Monte Carlo (MC) retrospective dosimetry and had two aims: (1) to determine the anatomic accuracy of UF/NCI phantoms by comparing 3D organ doses in National Wilms Tumor Study (NWTS) patient-matched UF/NCI phantoms to organ doses in corresponding patient-matched CT scans and (2) to compare infield and out-of-field organ dosimetry using two dosimetry methods-standard radiation therapy (RT) treatment planning systems (TPS) and MC dosimetry in these two anatomic models.

Methods: Twenty NWTS patient-matched Digital Imaging and Communications in Medicine (DICOM) files of UF/NCI phantoms and CT scans were imported into the Pinnacle RT TPS. The NWTS RT fields (whole abdomen, flank, whole lung, or a combination) and RT doses (10-45 Gy) were reconstructed in both models.

View Article and Find Full Text PDF

Radiation dosimetry is an essential input for epidemiological studies of radiotherapy patients aimed at quantifying the dose-response relationship of late-term morbidity and mortality. Individualised organ dose must be estimated for all tissues of interest located in-field, near-field, or out-of-field. Whereas conventional measurement approaches are limited to points in water or anthropomorphic phantoms, computational approaches using patient images or human phantoms offer greater flexibility and can provide more detailed three-dimensional dose information.

View Article and Find Full Text PDF

Epidemiological investigation is an important approach to assessing the risk of late effects after radiotherapy, and organ dosimetry is a crucial part of such analysis. Computed tomography (CT) images, if available, can be a valuable resource for individualizing the dosimetry, because they describe the specific anatomy of the patient. However, CT images acquired for radiation treatment planning purposes cover only a portion of the body near the target volume, whereas for epidemiology, the interest lies in the more distant normal tissues, which may be located outside the scan range.

View Article and Find Full Text PDF

The risks associated with exposure to external fields of ionising radiation are important to quantify in order to provide guidance towards public and worker protection. In Publication 116 of 2010, the International Commission on Radiological Protection (ICRP) published adult male and female fluence-to-dose coefficients (henceforth referred to as dose coefficients) for external exposures to six types of idealised neutron fields. However, ICRP 116 dose coefficients are not appropriate for applications involving children due to their smaller body weight and stature.

View Article and Find Full Text PDF

Although it is known that obesity has a profound effect on x-ray computed tomography (CT) image quality and patient organ dose, quantitative data describing this relationship are not currently available. This study examines the effect of obesity on the calculated radiation dose to organs and tissues from CT using newly developed phantoms representing overweight and obese patients. These phantoms were derived from the previously developed RPI-adult male and female computational phantoms.

View Article and Find Full Text PDF

Purpose: Accelerated partial breast irradiation via interstitial balloon brachytherapy is a fast and effective treatment method for certain early stage breast cancers. The radiation can be delivered using a conventional high-dose rate (HDR) 192Ir gamma-emitting source or a novel electronic brachytherapy (eBx) source which uses lower energy x rays that do not penetrate as far within the patient. A previous study [A.

View Article and Find Full Text PDF

In vivo radiobioassay is integral to many health physics and radiological protection programs dealing with internal exposures. The Bottle Manikin Absorber (BOMAB) physical phantom has been widely used for whole-body counting calibrations. However, the shape of BOMAB phantoms-a collection of plastic, cylindrical shells which contain no bones or internal organs-does not represent realistic human anatomy.

View Article and Find Full Text PDF