Publications by authors named "Matthew Miele"

Acinar cell carcinoma (ACC) and pancreatoblastoma (PBL) are rare pancreatic malignancies with acinar differentiation. Proteogenomic profiling of ACC and PBL revealed distinct protein expression patterns compared to pancreatic ductal adenocarcinoma (PDAC) and benign pancreas. ACC and PBL exhibited similarities, with enrichment in proteins related to RNA processing, chromosome organization, and the mitoribosome, while PDACs overexpressed proteins associated with actin-based processes, extracellular matrix, and immune-active stroma.

View Article and Find Full Text PDF

Phagocytosis is an intensely physical process that depends on the mechanical properties of both the phagocytic cell and its chosen target. Here, we employed differentially deformable hydrogel microparticles to examine the role of cargo rigidity in the regulation of phagocytosis by macrophages. Whereas stiff cargos elicited canonical phagocytic cup formation and rapid engulfment, soft cargos induced an architecturally distinct response, characterized by filamentous actin protrusions at the center of the contact site, slower cup advancement, and frequent phagocytic stalling.

View Article and Find Full Text PDF

Pancreatic neuroendocrine tumors (PanNETs) represent well-differentiated endocrine neoplasms with variable clinical outcomes. Predicting patient outcomes using the current tumor grading system is challenging. In addition, traditional systemic treatment options for PanNETs, such as somatostatin analogs or cytotoxic chemotherapies, are very limited.

View Article and Find Full Text PDF

The majority of human breast cancers are dependent on hormone-stimulated estrogen receptor alpha (ER) and are sensitive to its inhibition. Treatment resistance arises in most advanced cancers due to genetic alterations that promote ligand independent activation of ER itself or ER target genes. Whereas re-targeting of the ER ligand binding domain (LBD) with newer ER antagonists can work in some cases, these drugs are largely ineffective in many genetic backgrounds including ER fusions that lose the LBD or in cancers that hyperactivate ER targets.

View Article and Find Full Text PDF

Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases.

View Article and Find Full Text PDF

Ubiquitin-like protein ISG15 plays an important role in an array of cellular functions via its covalent attachment to target proteins (ISGylation). Here, we present a protocol for the identification of ISGylated proteins that avoids the caveats associated with ISG15 overexpression and minimizes the likelihood of false positives. We describe steps for the tagging of endogenous ISG15, followed by genotyping and clone selection.

View Article and Find Full Text PDF

Trimethylation of histone H3 lysine 4 (H3K4me3) is associated with transcriptional start sites and has been proposed to regulate transcription initiation. However, redundant functions of the H3K4 SET1/COMPASS methyltransferase complexes complicate the elucidation of the specific role of H3K4me3 in transcriptional regulation. Here, using mouse embryonic stem cells as a model system, we show that acute ablation of shared subunits of the SET1/COMPASS complexes leads to a complete loss of all H3K4 methylation.

View Article and Find Full Text PDF

Inorganic phosphate is an essential nutrient acquired by cells from their environment. Here, we characterize the adaptative responses of fission yeast to chronic phosphate starvation, during which cells enter a state of quiescence, initially fully reversible upon replenishing phosphate after 2 days but resulting in gradual loss of viability during 4 weeks of starvation. Time-resolved analyses of changes in mRNA levels revealed a coherent transcriptional program in which phosphate dynamics and autophagy were upregulated, while the machineries for rRNA synthesis and ribosome assembly, and for tRNA synthesis and maturation, were downregulated in tandem with global repression of genes encoding ribosomal proteins and translation factors.

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) are receptors for antigen that direct potent immune responses. Tumor escape associated with low target antigen expression is emerging as one potential limitation of their efficacy. Here we edit the TRAC locus in human peripheral blood T cells to engage cell-surface targets through their T cell receptor-CD3 complex reconfigured to utilize the same immunoglobulin heavy and light chains as a matched CAR.

View Article and Find Full Text PDF

Copper serves as a co-factor for a host of metalloenzymes that contribute to malignant progression. The orally bioavailable copper chelating agent tetrathiomolybdate (TM) has been associated with a significant survival benefit in high-risk triple negative breast cancer (TNBC) patients. Despite these promising data, the mechanisms by which copper depletion impacts metastasis are poorly understood and this remains a major barrier to advancing TM to a randomized phase II trial.

View Article and Find Full Text PDF

Theranostic agents should ideally be renally cleared and biodegradable. Here, we report the synthesis, characterization and theranostic applications of fluorescent ultrasmall gold quantum clusters that are stabilized by the milk metalloprotein alpha-lactalbumin. We synthesized three types of these nanoprobes that together display fluorescence across the visible and near-infrared spectra when excited at a single wavelength through optical colour coding.

View Article and Find Full Text PDF

The NRF2 transcription factor controls a cell stress program that is implicated in cancer and there is great interest in targeting NRF2 for therapy. We show that NRF2 activity depends on Fructosamine-3-kinase (FN3K)-a kinase that triggers protein de-glycation. In its absence, NRF2 is extensively glycated, unstable, and defective at binding to small MAF proteins and transcriptional activation.

View Article and Find Full Text PDF

The dipeptidyl peptidases (DPPs) regulate hormones, cytokines, and neuropeptides by cleaving dipeptides after proline from their amino termini. Due to technical challenges, many DPP substrates remain unknown. Here, we introduce a simple method, termed CHOPS (chemical enrichment of protease substrates), for the discovery of protease substrates.

View Article and Find Full Text PDF

Chimeric antigen receptors (CARs) are synthetic antigen receptors that reprogram T cell specificity, function and persistence. Patient-derived CAR T cells have demonstrated remarkable efficacy against a range of B-cell malignancies, and the results of early clinical trials suggest activity in multiple myeloma. Despite high complete response rates, relapses occur in a large fraction of patients; some of these are antigen-negative and others are antigen-low.

View Article and Find Full Text PDF

The efficacy of chimeric antigen receptor (CAR) T cell therapy against poorly responding tumors can be enhanced by administering the cells in combination with immune checkpoint blockade inhibitors. Alternatively, the CAR construct has been engineered to coexpress factors that boost CAR-T cell function in the tumor microenvironment. We modified CAR-T cells to secrete PD-1-blocking single-chain variable fragments (scFv).

View Article and Find Full Text PDF

Wnt proteins are a family of secreted signaling proteins that play key roles in regulating cell proliferation in both embryonic and adult tissues. Production of active Wnt depends on attachment of palmitoleate, a monounsaturated fatty acid, to a conserved serine by the acyltransferase Porcupine (PORCN). Studies of PORCN activity relied on cell-based fatty acylation and signaling assays as no direct enzyme assay had yet been developed.

View Article and Find Full Text PDF