Am J Physiol Lung Cell Mol Physiol
February 2024
Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction.
View Article and Find Full Text PDFBronchiolitis obliterans (BO) is a devastating lung disease that can develop following inhalation exposure to certain chemicals. Diacetyl (DA) is one chemical commonly associated with BO development when inhaled at occupational levels. Previous studies in rats have shown that repetitive DA vapor exposures increased lung CD4CD25 T cells and bronchoalveolar (BAL) interleukin-17A (IL-17A) concentrations concurrent with the development of airway remodeling.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2023
E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics.
View Article and Find Full Text PDFE-cigarette or vaping product use-associated lung injury (EVALI) is a severe pulmonary illness associated with the use of e-cigarettes or vaping products that was officially identified and named in 2019. This American Thoracic Society workshop was convened in 2021 to identify and prioritize research and regulatory needs to adequately respond to the EVALI outbreak and to prevent similar instances of disease associated with e-cigarette or vaping product use. An interdisciplinary group of 26 experts in adult and pediatric clinical care, public health, regulatory oversight, and toxicology were convened for the workshop.
View Article and Find Full Text PDFHuman disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2022
Bronchiolitis obliterans (BO) is a debilitating disease of the small airways that can develop following exposure to toxic chemicals as well as respiratory tract infections. BO development is strongly associated with diacetyl (DA) inhalation exposures at occupationally relevant concentrations or severe influenza A viral (IAV) infections. However, it remains unclear whether lower dose exposures or more mild IAV infections can result in similar pathology.
View Article and Find Full Text PDFDiacetyl (DA; 2,3-butanedione) is a highly reactive alpha (α)-diketone. Inhalation exposure to DA can cause significant airway epithelial cell injury, however, the mechanisms of toxicity remain poorly understood. The purpose of these experiments was to assess for changes in abundance and distribution of hemidesmosome-associated proteins following DA exposure that contribute to DA-induced epithelial toxicity.
View Article and Find Full Text PDFBackground: Electronic cigarette (e-cigarette) vaping, containing nicotine and/or Δ, Δ or Δ or Δ tetrahydrocannabinol (Δ-THC), is associated with an outbreak of e-cigarette, or vaping, product use-associated lung injury (EVALI). Despite thousands being hospitalised with EVALI, much remains unknown about diagnosis, treatment and disease pathogenesis. Biomarkers of inflammation, oxidative stress and lipid mediators may help identify e-cigarette users with EVALI.
View Article and Find Full Text PDFDiacetyl (DA) is a highly reactive alpha diketone associated with flavoring-related lung disease. In rodents, acute DA vapor exposure can initiate an airway-centric, inflammatory response. However, this immune response has yet to be fully characterized in the context of flavoring-related lung disease progression.
View Article and Find Full Text PDFThe current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. To define the temporal dynamic of protein expression during human lung development.
View Article and Find Full Text PDFBackground And Objectives: Plastic bronchitis (PB) is a condition characterized by the formation of thick airway casts leading to acute and often life-threatening airway obstruction. PB occurs mainly in pediatric patients with congenital heart disease (CHO) who have undergone staged surgical palliation (Glenn, Fontan), but can also occur after chemical inhalation, H1N1, severe COVID-19, sickle cell disease, severe asthma, and other diseases. Mortality risk from PB can be up to 40%-60%, and no treatment guideline exist.
View Article and Find Full Text PDFElectronic cigarettes (e-cigarettes) are commonly used devices by adolescents and young adults. Since their introduction, the popularity of e-cigarettes has increased significantly with close to twenty percent of United States high school students reporting current use in 2020. As the number of e-cigarette users has increased, so have reports of vaping related health complications.
View Article and Find Full Text PDFBronchiolitis obliterans (BO) is a devastating lung disease seen commonly after lung transplant, following severe respiratory tract infection or chemical inhalation exposure. Diacetyl (DA; 2,3-butanedione) is a highly reactive alpha-diketone known to cause BO when inhaled, however, the mechanisms of how inhalation exposure leads to BO development remains poorly understood. In the current work, we combined two clinically relevant models for studying the pathogenesis of DA-induced BO: (1) an in vivo rat model of repetitive DA vapor exposures with recovery and (2) an in vitro model of primary human airway epithelial cells exposed to pure DA vapors.
View Article and Find Full Text PDFE-cigarette (e-cig) aerosols are complex mixtures of various chemicals including humectants (propylene glycol (PG) and vegetable glycerin (VG)), nicotine, and various flavoring additives. Emerging research is beginning to challenge the "relatively safe" perception of e-cigarettes. Recent studies suggest e-cig aerosols provoke oxidative stress; however, details of the underlying molecular mechanisms remain unclear.
View Article and Find Full Text PDFRecently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT), may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products.
View Article and Find Full Text PDFRecently, there has been an outbreak associated with the use of e-cigarette or vaping products, associated lung injury (EVALI). The primary components of vaping products, vitamin E acetate (VEA) and medium-chain triglycerides (MCT) may be responsible for acute lung toxicity. Currently, little information is available on the physiological and biological effects of exposure to these products.
View Article and Find Full Text PDFNitrogen mustard (NM) is a highly toxic alkylating agent. Inhalation exposure can cause acute and chronic lung injury. This study's aims were to develop an in vitro coculture model of mustard-induced airway injury and to identify growth factors contributing to airway pathology.
View Article and Find Full Text PDF