Publications by authors named "Matthew Markovetz"

Article Synopsis
  • Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, results from mutations in the STAT3 gene, leading to chronic respiratory infections due to compromised pulmonary defense mechanisms.
  • The study aimed to investigate how these STAT3 mutations affect the airway epithelium's ability to defend against infections, analyzing sputum properties and lung tissue from patients.
  • Findings revealed that STAT3 deficiency disrupts critical airway functions, including mucus secretion and ciliary movement, contributing to increased infection risk and inflammation in patients with this syndrome.*
View Article and Find Full Text PDF

Unlabelled: In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, , independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota.

View Article and Find Full Text PDF

Unlabelled: The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including , which is responsible for the majority of morbidity and mortality in MADs.

View Article and Find Full Text PDF

Bronchiectasis is a pathological dilatation of the bronchi in the respiratory airways associated with environmental or genetic causes (e.g., cystic fibrosis, primary ciliary dyskinesia, and primary immunodeficiency disorders), but most cases remain idiopathic.

View Article and Find Full Text PDF

People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.

View Article and Find Full Text PDF

In a healthy colon, the stratified mucus layer serves as a crucial innate immune barrier to protect the epithelium from microbes. Mucins are complex glycoproteins that serve as a nutrient source for resident microflora and can be exploited by pathogens. We aimed to understand how the intestinal pathogen, , independently uses or manipulates mucus to its benefit, without contributions from members of the microbiota.

View Article and Find Full Text PDF

Unlabelled: The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including , which is responsible for the majority of morbidity and mortality in MADs.

View Article and Find Full Text PDF

The mucus lining of the human airway epithelium contains two gel-forming mucins, MUC5B and MUC5AC. During progression of cystic fibrosis (CF), mucus hyper-concentrates as its mucin ratio changes, coinciding with formation of insoluble, dense mucus flakes. We explore rheological heterogeneity of this pathology with reconstituted mucus matching three stages of CF progression and particle-tracking of 200 nm and 1 micron diameter beads.

View Article and Find Full Text PDF

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear.

View Article and Find Full Text PDF

People with muco-obstructive pulmonary diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) often have acute or chronic respiratory infections that are difficult to treat due in part to the accumulation of hyperconcentrated mucus within the airway. Mucus accumulation and obstruction promote chronic inflammation and infection and reduce therapeutic efficacy. Bacterial aggregates in the form of biofilms exhibit increased resistance to mechanical stressors from the immune response (e.

View Article and Find Full Text PDF

Recent advances in the therapeutic potential of RNA-related treatments, specifically for antisense oligonucleotide (ASO)-based drugs, have led to increased numbers of ASO regulatory approvals. In this study, we focus on SPL84, an inhaled ASO-based drug, developed for the treatment of the pulmonary disease cystic fibrosis (CF). Pulmonary drug delivery is challenging, due to a variety of biological, physical, chemical, and structural barriers, especially when targeting the cell nucleus.

View Article and Find Full Text PDF

Across the globe, millions of people are affected by muco-obstructive pulmonary diseases like cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In MOPDs, the airway mucus becomes hyperconcentrated, increasing viscoelasticity and impairing mucus clearance. Research focused on treatment of MOPDs requires relevant sources of airway mucus both as a control sample type and as a basis for manipulation to study the effects of additional hyperconcentration, inflammatory milieu, and biofilm growth on the biochemical and biophysical properties of mucus.

View Article and Find Full Text PDF

The viscoelastic properties of biofilms are correlated with their susceptibility to mechanical and chemical stress, and the airway environment in muco-obstructive pulmonary diseases (MOPD) facilitates robust biofilm formation. Hyperconcentrated, viscoelastic mucus promotes chronic inflammation and infection, resulting in increased mucin and DNA concentrations. The viscoelastic properties of biofilms are regulated by biopolymers, including polysaccharides and DNA, and influence responses to antibiotics and phagocytosis.

View Article and Find Full Text PDF

The pathological properties of airway mucus in cystic fibrosis (CF) are dictated by mucus concentration and composition, with mucins and DNA being responsible for mucus viscoelastic properties. As CF pulmonary disease progresses, the concentrations of mucins and DNA increase and are associated with increased mucus viscoelasticity and decreased transport. Similarly, the biophysical properties of bacterial biofilms are heavily influenced by the composition of their extracellular polymeric substances (EPS).

View Article and Find Full Text PDF
Article Synopsis
  • Mucus properties in lung diseases like asthma and cystic fibrosis are altered due to factors like excessive mucus secretion and airway dehydration, impacting respiratory function.
  • A new benchtop device called Rheomuco can quickly and easily measure the viscoelastic properties of mucus, providing results in under 5 minutes, which is beneficial for clinical assessments.
  • The study validated the device's performance against traditional methods and demonstrated its ability to detect significant changes in mucus consistency, highlighting its potential for optimizing treatments with mucoactive drugs.
View Article and Find Full Text PDF

Background: Mucus hyperconcentration in cystic fibrosis (CF) lung disease is marked by increases in both mucin and DNA concentration. Additionally, it has been shown that half of the mucins present in bronchial alveolar lavage fluid (BALF) from preschool-aged CF patients are present in as non-swellable mucus flakes. This motivates us to examine the utility of mucus flakes, as well as mucin and DNA concentrations in BALF as markers of infection and inflammation in CF airway disease.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is characterized by abnormal transepithelial ion transport. However, a description of CF lung disease pathophysiology unifying superficial epithelial and submucosal gland (SMG) dysfunctions has remained elusive. We hypothesized that biophysical abnormalities associated with CF mucus hyperconcentration provide a unifying mechanism.

View Article and Find Full Text PDF

We develop the first molecular dynamics model of airway mucus based on the detailed physical properties and chemical structure of the predominant gel-forming mucin MUC5B. Our airway mucus model leverages the LAMMPS open-source code [https://lammps.sandia.

View Article and Find Full Text PDF

The goal of this project was to validate the functional relevance and utility of mucus produced by an in vitro intestinal cell culture model. This is facilitated by the need to physiologically replicate both healthy and abnormal mucus conditions from native intestinal tissue, where mucus properties have been connected to intestinal disease models. Mucus harvested from colonic cell cultures derived from healthy donors was compared to mucus collected from surgically resected, noninflamed transverse colon tissue.

View Article and Find Full Text PDF

Question: Cystic fibrosis (CF) is characterised by the accumulation of viscous adherent mucus in the lungs. While several hypotheses invoke a direct relationship with cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction ( acidic airway surface liquid (ASL) pH, low bicarbonate (HCO ) concentration, airway dehydration), the dominant biochemical alteration of CF mucus remains unknown.

Materials/methods: We characterised a novel cell line (CFTR-KO Calu3 cells) and the responses of human bronchial epithelial (HBE) cells from subjects with G551D or F508del mutations to ivacaftor and elexacaftor-tezacaftor-ivacaftor.

View Article and Find Full Text PDF

Impaired mucociliary clearance (MCC) is a key feature of many airway diseases, including asthma, bronchiectasis, chronic obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. To improve MCC and develop new treatments for these diseases requires a thorough understanding of how mucus concentration, mucus composition, and ciliary activity affect MCC, and how different therapeutics impact this process. Although differentiated cultures of human airway epithelial cells are useful for investigations of MCC, the extent of ciliary coordination in these cultures varies, and the mechanisms controlling ciliary orientation are not completely understood.

View Article and Find Full Text PDF

is the main contributor to the morbidity and mortality of cystic fibrosis (CF) patients. Chronic respiratory infections are rarely eradicated due to protection from CF mucus and the biofilm matrix. The composition of the biofilm matrix determines its viscoelastic properties and affects antibiotic efficacy.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is both the most common and most lethal genetic disease in the Caucasian population. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is characterized by the accumulation of thick, adherent mucus plaques in multiple organs, of which the lungs, gastrointestinal tract and pancreatic ducts are the most commonly affected. A similar pathogenesis cascade is observed in all of these organs: loss of CFTR function leads to altered ion transport, consisting of decreased chloride and bicarbonate secretion via the CFTR channel and increased sodium absorption via epithelial sodium channel upregulation.

View Article and Find Full Text PDF

Muco-obstructive lung diseases (MOLDs), like cystic fibrosis and chronic obstructive pulmonary disease, affect a spectrum of subjects globally. In MOLDs, the airway mucus becomes hyperconcentrated, increasing osmotic and viscoelastic moduli and impairing mucus clearance. MOLD research requires relevant sources of healthy airway mucus for experimental manipulation and analysis.

View Article and Find Full Text PDF

Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients.

View Article and Find Full Text PDF