Publications by authors named "Matthew Marklund"

The deposition of aggregated proteins is a common neuropathological denominator for neurodegenerative disorders. Experimental evidence suggests that disease propagation involves prion-like mechanisms that cause the spreading of template-directed aggregation of specific disease-associated proteins. In transgenic (Tg) mouse models of superoxide dismutase-1 (SOD1)-linked amyotrophic lateral sclerosis (ALS), inoculation of minute amounts of human SOD1 (hSOD1) aggregates into the spinal cord or peripheral nerves induces premature ALS-like disease and template-directed hSOD1 aggregation that spreads along the neuroaxis.

View Article and Find Full Text PDF

Increasing evidence suggests that propagation of the motor neuron disease amyotrophic lateral sclerosis (ALS) involves the pathogenic aggregation of disease-associated proteins that spread in a prion-like manner. We have identified two aggregate strains of human superoxide dismutase 1 (hSOD1) that arise in the CNS of transgenic mouse models of SOD1-mediated ALS. Both strains transmit template-directed aggregation and premature fatal paralysis when inoculated into the spinal cord of adult hSOD1 transgenic mice.

View Article and Find Full Text PDF

The organisation of the telencephalon into its major structures depends on its early regionalisation along the dorsoventral axis. Previous studies have provided evidence that sonic hedgehog (SHH) is required for the generation of telencephalic cells of ventral character, and that sequential WNT and fibroblast growth factor (FGF) signalling specifies cells of dorsal telencephalic character. However, the signalling mechanisms that specify telencephalic cells of an intermediate character remain to be defined.

View Article and Find Full Text PDF

Dorsoventral patterning of the telencephalon is established early in forebrain development and underlies many of the regional subdivisions that are critical to the later organization of neural circuits in the cerebral cortex and basal ganglia. Sonic hedgehog (Shh) is involved in the generation of the ventral-most telencephalic cells, but the identity of the extrinsic signal(s) that induce dorsal character in telencephalic cells is not known. Here we show in chick embryos that sequential Wnt and fibroblast growth factor (FGF) signaling specifies cells of dorsal telencephalic character.

View Article and Find Full Text PDF