In this study, innovative nanoscale devices are developed to investigate the charge transport in organic semiconductor nanoparticles. Using different steps of lithography techniques and dielectrophoresis, planar organic nano-junctions are fabricated from which hole mobilities are extracted in a space charge-limited current regime. Subsequently, these devices are used to investigate the impact of the composition and morphology of organic semiconductor nanoparticles on the charge mobilities.
View Article and Find Full Text PDFThe vast peat deposits in the Peruvian Amazon are crucial to the global climate. Palm swamp, the most extensive regional peatland ecosystem faces different threats, including deforestation and degradation due to felling of the dominant palm Mauritia flexuosa for fruit harvesting. While these activities convert this natural C sink into a source, the distribution of degradation and deforestation in this ecosystem and related C emissions remain unstudied.
View Article and Find Full Text PDFThis study reports results from research conducted at the Observatory of Mount Pico (OMP), 2225 m above mean sea level on Pico Island in the Azores archipelago in June and July 2017. We investigated the chemical composition, mixing state, and cloud condensation nuclei (CCN) activities of long-range transported free tropospheric (FT) particles. FLEXible PARTicle Lagrangian particle dispersion model (FLEXPART) simulations reveal that most air masses that arrived at the OMP during the sampling period originated in North America and were highly aged (average plume age > 10 days).
View Article and Find Full Text PDFUnlabelled: Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6).
View Article and Find Full Text PDFA persistent lack of detailed and quantitative structural analysis of these hierarchical carbon nanotube (CNT) ensembles precludes establishing processing-structure-property relationships that are essential to enhance macroscale performance (e.g., in mechanical, electrical, thermal applications).
View Article and Find Full Text PDFWe report, for the first time, sub-4 nm mapping of donor : acceptor nanoparticle composition in eco-friendly colloidal dispersions for organic electronics. Low energy scanning transmission electron microscopy (STEM) energy dispersive X-ray spectroscopy (EDX) mapping has revealed the internal morphology of organic semiconductor donor : acceptor blend nanoparticles at the sub-4 nm level. A unique element was available for utilisation as a fingerprint element to differentiate donor from acceptor material in each blend system.
View Article and Find Full Text PDFThe past decade has witnessed the development of layered-hydroxide-based self-supporting electrodes, but the low active mass ratio impedes its all-around energy-storage applications. Herein, the intrinsic limit of layered hydroxides is broken by engineering F-substituted β-Ni(OH) (Ni-F-OH) plates with a sub-micrometer thickness (over 700 nm), producing a superhigh mass loading of 29.8 mg cm on the carbon substrate.
View Article and Find Full Text PDFDichroic tomography is a 3D imaging technique in which the polarization of the incident beam is used to induce contrast due to the magnetization or orientation of a sample. The aim is to reconstruct not only the optical density but the dichroism of the sample. The theory of dichroic tomographic and laminographic imaging in the parallel-beam case is discussed as well as the problem of reconstruction of the sample's optical properties.
View Article and Find Full Text PDFLayered double hydroxides (LDH) have been extensively investigated for charge storage, however, their development is hampered by the sluggish reaction dynamics. Herein, triggered by mismatching integration of Mn sites, we configured wrinkled Mn/NiCo-LDH with strains and defects, where promoted mass & charge transport behaviors were realized. The well-tailored Mn/NiCo-LDH displays a capacity up to 518 C g (1 A g), a remarkable rate performance (78%@100 A g) and a long cycle life (without capacity decay after 10,000 cycles).
View Article and Find Full Text PDFCrystallization by particle attachment (CPA) is a gradual process where each step has its own thermodynamic and kinetic constrains defining a unique pathway of crystal growth. An important example is biomineralization of calcium carbonate through amorphous precursors that are morphed into shapes and textural patterns that cannot be envisioned by the classical monomer-by-monomer approach. Here, a mechanistic link between the collective kinetics of mineral deposition and the emergence of crystallographic texture is established.
View Article and Find Full Text PDFWe report the synthesis of four homoleptic thorium(iv) amidate complexes as single-source molecular precursors for thorium dioxide. Each can be sublimed at atmospheric pressure, with the substituents on the amidate ligands significantly impacting their volatility and thermal stability. These complexes decompose via alkene elimination to give ThO2 without need for a secondary oxygen source.
View Article and Find Full Text PDFWe use MRA to elucidate a potential association of unilateral optic atrophy in infancy, ipsilateral internal carotid artery narrowing after extracorporeal membrane oxygenation, and ipsilateral hypoplasia of the A1 segment of the anterior cerebral artery.
View Article and Find Full Text PDFThis case series examines the clinical conditions associated with splenic infarction of adult patients between 2010 and 2015 from computed tomographic imaging scans.
View Article and Find Full Text PDFSpherulites are radial distributions of acicular crystals, common in biogenic, geologic, and synthetic systems, yet exactly how spherulitic crystals nucleate and grow is still poorly understood. To investigate these processes in more detail, we chose scleractinian corals as a model system, because they are well known to form their skeletons from aragonite (CaCO) spherulites, and because a comparative study of crystal structures across coral species has not been performed previously. We observed that all 12 diverse coral species analyzed here exhibit plumose spherulites in their skeletons, with well-defined centers of calcification (CoCs), and crystalline fibers radiating from them.
View Article and Find Full Text PDFCerium oxide (ceria, CeO) is a technologically important material for energy conversion applications. Its activities strongly depend on redox states and oxygen vacancy concentration. Understanding the functionality of chemical active species and behavior of oxygen vacancy during operation, especially in high-temperature solid-state electrochemical cells, is the key to advance future material design.
View Article and Find Full Text PDFThe effects of cerium oxide nanoparticles (CeO-NPs) on N/N ratio (δN) in wheat and barley were investigated. Seedlings were exposed to 0 and 500 mg CeO-NPs/L (Ce-0 and Ce-500, respectively) in hydroponic suspension supplied with NHNO, NH , or NO . N uptake and δN discrimination (i.
View Article and Find Full Text PDFThe recent observation in parrotfish teeth of X-ray linear dichroism motivated an in-depth investigation into this spectroscopic effect in various apatite crystals, including geologic hydroxyapatite (Ca(PO)OH), fluorapatite (Ca(PO)F), and their biogenic counterparts in human bone, mouse enamel, and in parrotfish bone, dentin, and enameloid, the equivalent of dental enamel in certain fish. These data are important because they now enable visualization of the nano- to microscale structure of apatite crystals in teeth and bone. Polarization-dependent imaging contrast (PIC) maps of lamellar bone, obtained with a new method that minimizes space-charge and charging effects, show the expected rotating apatite crystal orientations.
View Article and Find Full Text PDFThe transformation of cerium oxide nanoparticles (CeO-NPs) in soil and its role in plant uptake is a critical knowledge gap in the literature. This study investigated the reduction and speciation of CeO-NPs in barley ( L.) cultivated in soil amended with 250 mg CeO-NPs kg soil.
View Article and Find Full Text PDFWe present a joint experimental and computational study of the hexacyanoferrate aqueous complexes at equilibrium in the 250 meV to 7.15 keV regime. The experiments and the computations include the vibrational spectroscopy of the cyanide ligands, the valence electronic absorption spectra, and Fe 1s core hole spectra using element-specific-resonant X-ray absorption and emission techniques.
View Article and Find Full Text PDFIn contrast to synthetic materials, materials produced by organisms are formed in ambient conditions and with a limited selection of elements. Nevertheless, living organisms reveal elegant strategies for achieving specific functions, ranging from skeletal support to mastication, from sensors and defensive tools to optical function. Using state-of-the-art characterization techniques, we present a biostrategy for strengthening and toughening the otherwise brittle calcite optical lenses found in the brittlestar This intriguing process uses coherent nanoprecipitates to induce compressive stresses on the host matrix, functionally resembling the Guinier-Preston zones known in classical metallurgy.
View Article and Find Full Text PDFParrotfish (Scaridae) feed by biting stony corals. To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish Chlorurus microrhinos tooth. Its enameloid is a fluorapatite (Ca(PO)F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.
View Article and Find Full Text PDFDo corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution.
View Article and Find Full Text PDF