A molecular system comprising a cationic zinc complex and an amino acid-derived ambident ligand having phosphate and carboxylate binding sites undergoes a series of rearrangements in which the metal cation migrates autonomously from one site to another. The location of the metal is identified by the circular dichroism spectrum of a ligated bis(2-quinolylmethyl)-(2-pyridylmethyl)amine (BQPA) chromophore, which takes a characteristic shape at each binding site. Migration is fuelled by the decomposition of trichloroacetic acid to CO and CHCl , which progressively neutralises the acidity of the system as a function of time, revealing in sequence binding sites of increasing basicity.
View Article and Find Full Text PDFMolecules that change shape in response to environmental conditions are central to biological molecular communication devices and their synthetic chemical analogues. Here we report a molecular system in which a series of chiral anionic ligands of differing basicity are selectively protonated according to the pH of the medium. A cationic circular dichroism (CD) reporter complex responds to anion binding by selecting one of two alternative enantiomeric conformations.
View Article and Find Full Text PDF