To examine the role of muscle AMP-activated protein kinase (AMPK) in maximal exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle, we generated muscle-specific transgenic mice carrying cDNAs of inactive AMPK alpha2 (alpha2i TG). Fed blood glucose was slightly higher in alpha2i TG mice compared to wild type littermates, however, the difference was not statistically significant. In alpha2i TG mice, glucose tolerance was slightly impaired in male, but not in female mice, compared to wild type littermates.
View Article and Find Full Text PDFTo examine the role of AMP-activated protein kinase (AMPK) in muscle glucose transport, we generated muscle-specific transgenic mice (TG) carrying cDNAs of inactive alpha2 (alpha2i TG) and alpha1 (alpha1i TG) catalytic subunits. Extensor digitorum longus (EDL) muscles from wild type and TG mice were isolated and subjected to a series of in vitro incubation experiments. In alpha2i TG mice basal alpha2 activity was barely detectable, whereas basal alpha1 activity was only partially reduced.
View Article and Find Full Text PDF