Adherence of proteins, cells, and microorganisms to the surface of biomaterials used for vascular access contribute to device failure by thrombosis, occlusions, and infections. Current technologies for inhibiting these complications are limited to coatings and additives that are limited in duration of efficacy and often induce adverse side effects. In this work, we developed a novel composite hydrogel structure comprising of a porous poly(vinyl alcohol) (PVA) that is impregnated with poly(acrylic acid) (PAA) and heat treated to create a physically cross-linked high-strength hydrogel material.
View Article and Find Full Text PDFComposite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity.
View Article and Find Full Text PDF