The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1TCF-1 neoAg-specific CD8 T cells in tumors.
View Article and Find Full Text PDFRecent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research.
View Article and Find Full Text PDFRecent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy, have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research.
View Article and Find Full Text PDFThe goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to eliminate cancer by expanding and/or sustaining T cells with anti-tumor capabilities. However, whether cancer vaccines and ICT enhance anti-tumor immunity by distinct or overlapping mechanisms remains unclear. Here, we compared effective therapeutic tumor-specific mutant neoantigen (NeoAg) cancer vaccines with anti-CTLA-4 and/or anti-PD-1 ICT in preclinical models.
View Article and Find Full Text PDFThe induction of proinflammatory T cells by dendritic cell (DC) subtypes is critical for antitumor responses and effective immune checkpoint blockade (ICB) therapy. Here, we show that human CD1cCD5 DCs are reduced in melanoma-affected lymph nodes, with CD5 expression on DCs correlating with patient survival. Activating CD5 on DCs enhanced T cell priming and improved survival after ICB therapy.
View Article and Find Full Text PDFImmune checkpoint blockade (ICB) has revolutionized cancer treatment, yet quality of life and continuation of therapy can be constrained by immune-related adverse events (irAEs). Limited understanding of irAE mechanisms hampers development of approaches to mitigate their damage. To address this, we examined whether mice gained sensitivity to anti-CTLA-4 (αCTLA-4)-mediated toxicity upon disruption of gut homeostatic immunity.
View Article and Find Full Text PDFBasic science breakthroughs in T-cell biology and immune-tumor cell interactions ushered in a new era of cancer immunotherapy. Twenty years ago, cancer immunoediting was proposed as a framework to understand the dynamic process by which the immune system can both control and shape cancer and in its most complex form occurs through three phases termed elimination, equilibrium, and escape. During cancer progression through these phases, tumors undergo immunoediting, rendering them less immunogenic and more capable of establishing an immunosuppressive microenvironment.
View Article and Find Full Text PDFImmune checkpoint therapy (ICT) using antibody blockade of programmed cell death protein 1 (PD-1) or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can provoke T cell-dependent antitumor activity that generates durable clinical responses in some patients. The epigenetic and transcriptional features that T cells require for efficacious ICT remain to be fully elucidated. Herein, we report that anti-PD-1 and anti-CTLA-4 ICT induce upregulation of the transcription factor BHLHE40 in tumor antigen-specific CD8+ and CD4+ T cells and that T cells require BHLHE40 for effective ICT in mice bearing immune-edited tumors.
View Article and Find Full Text PDFCheckpoint immunotherapy unleashes T cell control of tumors, but is undermined by immunosuppressive myeloid cells. TREM2 is a myeloid receptor that transmits intracellular signals that sustain microglial responses during Alzheimer's disease. TREM2 is also expressed by tumor-infiltrating macrophages.
View Article and Find Full Text PDFThe ability of the immune system to eliminate and shape the immunogenicity of tumours defines the process of cancer immunoediting. Immunotherapies such as those that target immune checkpoint molecules can be used to augment immune-mediated elimination of tumours and have resulted in durable responses in patients with cancer that did not respond to previous treatments. However, only a subset of patients benefit from immunotherapy and more knowledge about what is required for successful treatment is needed.
View Article and Find Full Text PDFAlthough current immune-checkpoint therapy (ICT) mainly targets lymphoid cells, it is associated with a broader remodeling of the tumor micro-environment. Here, using complementary forms of high-dimensional profiling, we define differences across all hematopoietic cells from syngeneic mouse tumors during unrestrained tumor growth or effective ICT. Unbiased assessment of gene expression of tumor-infiltrating cells by single-cell RNA sequencing (scRNAseq) and longitudinal assessment of cellular protein expression by mass cytometry (CyTOF) revealed significant remodeling of both the lymphoid and myeloid intratumoral compartments.
View Article and Find Full Text PDFPosttranscriptional gene regulation by RNA-binding proteins, such as HuR (), fine-tune gene expression in T cells, leading to powerful effects on immune responses. HuR can stabilize target mRNAs and/or promote translation by interacting with their 3' untranslated region adenylate and uridylate-rich elements. It was previously demonstrated that HuR facilitates Th2 cytokine expression by mRNA stabilization.
View Article and Find Full Text PDFThe Keystone Symposia conference on was held at the Fairmont Chateau in Whistler, British Columbia, Canada, on March 19-23, 2017. The conference brought together a sold-out audience of 654 scientists, clinicians, and others from both academia and industry to discuss the latest developments in cancer immunology and immunotherapy. This meeting report summarizes the main themes that emerged during the four-day conference.
View Article and Find Full Text PDFAntibody blockade of programmed death-1 (PD-1) or its ligand, PD-L1, has led to unprecedented therapeutic responses in certain tumor-bearing individuals, but PD-L1 expression's prognostic value in stratifying cancer patients for such treatment remains unclear. Reports conflict on the significance of correlations between PD-L1 on tumor cells and positive clinical outcomes to PD-1/PD-L1 blockade. We investigated this issue using genomically related, clonal subsets from the same methylcholanthrene-induced sarcoma: a highly immunogenic subset that is spontaneously eliminated in vivo by adaptive immunity and a less immunogenic subset that forms tumors in immunocompetent mice, but is sensitive to PD-1/PD-L1 blockade therapy.
View Article and Find Full Text PDFDefinitive experimental evidence from mouse cancer models and strong correlative clinical data gave rise to the Cancer Immunoediting concept that explains the dual host-protective and tumor-promoting actions of immunity on developing cancers. Tumor-specific neoantigens can serve as targets of spontaneously arising adaptive immunity to cancer and thereby determine the ultimate fate of developing tumors. Tumor-specific neoantigens can also function as optimal targets of cancer immunotherapy against established tumors.
View Article and Find Full Text PDFFailure of T cells to protect against cancer is thought to result from lack of antigen recognition, chronic activation, and/or suppression by other cells. Using a mouse sarcoma model, we show that glucose consumption by tumors metabolically restricts T cells, leading to their dampened mTOR activity, glycolytic capacity, and IFN-γ production, thereby allowing tumor progression. We show that enhancing glycolysis in an antigenic "regressor" tumor is sufficient to override the protective ability of T cells to control tumor growth.
View Article and Find Full Text PDFIt is now well established that the immune system can recognize developing cancers and that therapeutic manipulation of immunity can induce tumor regression. The capacity to manifest remarkably durable responses in some patients has been ascribed in part to T cells that can (a) kill tumor cells directly, (b) orchestrate diverse antitumor immune responses, (c) manifest long-lasting memory, and (d) display remarkable specificity for tumor-derived proteins. This specificity stems from fundamental differences between cancer cells and their normal counterparts in that the former develop protein-altering mutations and undergo epigenetic and genetic alterations, resulting in aberrant protein expression.
View Article and Find Full Text PDFDue to poor correlation between steady state mRNA levels and protein product, purely transcriptomic profiling methods may miss genes posttranscriptionally regulated by RNA binding proteins (RBPs) and microRNAs (miRNAs). RNA immunoprecipitation (RIP) methods developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which may be regulated via transcript stability and translation. The RBP HuR (ELAVL1) and family members are major stabilizers of mRNA.
View Article and Find Full Text PDFThe immune system influences the fate of developing cancers by not only functioning as a tumour promoter that facilitates cellular transformation, promotes tumour growth and sculpts tumour cell immunogenicity, but also as an extrinsic tumour suppressor that either destroys developing tumours or restrains their expansion. Yet, clinically apparent cancers still arise in immunocompetent individuals in part as a consequence of cancer-induced immunosuppression. In many individuals, immunosuppression is mediated by cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), two immunomodulatory receptors expressed on T cells.
View Article and Find Full Text PDFThe principles of cancer immunoediting have set the foundations for understanding the dual host-protective and tumour sculpting actions of immunity on cancer and establishing the basis for novel individualized cancer immunotherapies. During cancer immunoediting, the host immune system shapes tumour fate in three phases through the activation of innate and adaptive immune mechanisms. In the first phase, Elimination, transformed cells are destroyed by a competent immune system.
View Article and Find Full Text PDFThe posttranscriptional mechanisms by which RNA binding proteins (RBPs) regulate T-cell differentiation and cytokine production in vivo remain unclear. The RBP HuR binds to labile mRNAs, usually leading to increases in mRNA stability and/or translation. Previous work demonstrated that HuR binds to the mRNAs encoding the Th2 transcription factor trans-acting T-cell-specific transcription factor (GATA-3) and Th2 cytokines interleukin (IL)-4 and IL-13, thereby regulating their expression.
View Article and Find Full Text PDFIL-17 is a proinflammatory cytokine produced by activated Th17 cells and other immune cells. IL-17-producing Th17 cells are major contributors to chronic inflammatory and autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Although the transcriptional regulation of Th17 cells is well understood, the posttranscriptional regulation of IL-17 gene expression remains unknown.
View Article and Find Full Text PDF