Publications by authors named "Matthew M Conley"

Efficient and affordable plant phenotyping methods are an essential response to global climatic pressures. This study demonstrates the continued potential of consumer-grade photography to capture plant phenotypic traits in turfgrass and derive new calculations. Yet the effects of image corrections on individual calculations are often unreported.

View Article and Find Full Text PDF

Active radiometric reflectance is useful to determine plant characteristics in field conditions. However, the physics of silicone diode-based sensing are temperature sensitive, where a change in temperature affects photoconductive resistance. High-throughput plant phenotyping (HTPP) is a modern approach using sensors often mounted to proximal based platforms for spatiotemporal measurements of field grown plants.

View Article and Find Full Text PDF

Remote-sensing using normalized difference vegetation index (NDVI) has the potential of rapidly detecting the effect of water stress on field crops. However, this detection has typically been accomplished only after the stress effect led to significant changes in crop green biomass, leaf area index, angle and position, and few studies have attempted to estimate the uncertainties of the regression models. These have limited the informed interpretation of NDVI data in agricultural applications.

View Article and Find Full Text PDF

Field-based high-throughput plant phenotyping (FB-HTPP) has been a primary focus for crop improvement to meet the demands of a growing population in a changing environment. Over the years, breeders, geneticists, physiologists, and agronomists have been able to improve the understanding between complex dynamic traits and plant response to changing environmental conditions using FB-HTPP. However, the volume, velocity, and variety of data captured by FB-HTPP can be problematic, requiring large data stores, databases, and computationally intensive data processing pipelines.

View Article and Find Full Text PDF

Many systems for field-based, high-throughput phenotyping (FB-HTP) quantify and characterize the reflected radiation from the crop canopy to derive phenotypes, as well as infer plant function and health status. However, given the technology's nascent status, it remains unknown how biophysical and physiological properties of the plant canopy impact downstream interpretation and application of canopy reflectance data. In that light, we assessed relationships between leaf thickness and several canopy-associated traits, including normalized difference vegetation index (NDVI), which was collected via active reflectance sensors carried on a mobile FB-HTP system, carbon isotope discrimination (CID), and chlorophyll content.

View Article and Find Full Text PDF