A scintillator-based Timepix3 (TPX3) detector was developed to resolve the high-frequency modulation of a neutron beam in both spatial and temporal domains, as required for neutron spin-echo experiments. In this system, light from a scintillator is manipulated with an optical lens and is intensified using an image intensifier, making it detectable with the TPX3 chip. Two different scintillators, namely, 6LiF:ZnS(Ag) and 6LiI:Eu, were investigated to achieve the high resolution needed for spin-echo modulated small-angle neutron scattering (SEMSANS) and modulation of intensity with zero effort (MIEZE).
View Article and Find Full Text PDFThis paper reports a new method to generate stable and high-brightness electroluminescence (EL) by subsequently growing large/small grains at micro/nano scales with the configuration of attaching small grains on the surfaces of large grains in perovskite (MAPbBr) films by mixing two precursor solutions (PbBr + MABr and Pb(Ac)·3HO + MABr). Consequently, the small and large grains serve, respectively, as passivation agents and light-emitting centers, enabling self-passivation on the defects located on the surfaces of light-emitting large grains. Furthermore, the light-emitting states become linearly polarized with maximal polarization of 30.
View Article and Find Full Text PDF