Publications by authors named "Matthew Lawrenz"

is the etiologic agent of the plague. A hallmark of plague is subversion of the host immune response by disrupting host signaling pathways required for inflammation. This non-inflammatory environment permits bacterial colonization and has been shown to be essential for disease manifestation.

View Article and Find Full Text PDF

Introduction: is the gram-negative, facultative intracellular bacterium that causes the disease known as plague. Due to the risk for aerosol transmission, a low infectious dose, and the acute and lethal nature of pneumonic plague, research activities with require Biosafety Level 3 (BSL-3) facilities to provide the appropriate safeguards to minimize accidental exposures and environmental release. However, many experimental assays cannot be performed in BSL-3 due to equipment availability, and thus require removal of samples from the BSL-3 laboratory to be completed.

View Article and Find Full Text PDF

is the etiological agent of human plague. However, certain evolutionarily divergent subspecies have different host specificities and virulence capacity compared to the more commonly studied strains with pandemic potential. This resource examines 10 diverse isolates representing some of the most understudied subspecies commonly referred to as Pestoides.

View Article and Find Full Text PDF

Leukotriene B4 (LTB4) is an inflammatory lipid produced in response to pathogens that is critical for initiating the inflammatory cascade needed to control infection. However, during plague, Yersinia pestis inhibits the timely synthesis of LTB4 and subsequent inflammation. Using bacterial mutants, we previously determined that Y.

View Article and Find Full Text PDF

Leukotriene B4 (LTB) is critical for initiating the inflammatory cascade in response to infection. However, colonizes the host by inhibiting the timely synthesis of LTB and inflammation. Here, we show that the bacterial type 3 secretion system (T3SS) is the primary pathogen associated molecular pattern (PAMP) responsible for LTB production by leukocytes in response to and , but synthesis is inhibited by the Yop effectors during interactions.

View Article and Find Full Text PDF

Subverting the host immune response to inhibit inflammation is a key virulence strategy of Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of lipid and protein mediators of inflammation. Because delayed inflammation is essential for Y.

View Article and Find Full Text PDF

Fleas transmit directly within the dermis of mammals to cause bubonic plague. Syringe-mediated inoculation is widely used to recapitulate bubonic plague and study pathogenesis. However, intradermal needle inoculation is tedious, error prone, and poses a significant safety risk for laboratorians.

View Article and Find Full Text PDF

Nutritional immunity includes sequestration of transition metals from invading pathogens. Yersinia pestis overcomes nutritional immunity by secreting yersiniabactin to acquire iron and zinc during infection. While the mechanisms for yersiniabactin synthesis and import are well-defined, those responsible for yersiniabactin secretion are unknown.

View Article and Find Full Text PDF

The rise in infections caused by antibiotic-resistant bacteria is outpacing the development of new antibiotics. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are a group of clinically important bacteria that have developed resistance to multiple antibiotics and are commonly referred to as multidrug resistant (MDR). The medical and research communities have recognized that, without new antimicrobials, infections by MDR bacteria will soon become a leading cause of morbidity and death.

View Article and Find Full Text PDF

Siderophores are iron-chelating molecules that solubilize Fe for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E.

View Article and Find Full Text PDF

Zinc is an essential cofactor for bacterial metabolism, and many Enterobacteriaceae express the zinc transporters ZnuABC and ZupT to acquire this metal in the host. However, the probiotic bacterium Escherichia coli Nissle 1917 (or "Nissle") exhibits appreciable growth in zinc-limited media even when these transporters are deleted. Here, we show that Nissle utilizes the siderophore yersiniabactin as a zincophore, enabling Nissle to grow in zinc-limited media, to tolerate calprotectin-mediated zinc sequestration, and to thrive in the inflamed gut.

View Article and Find Full Text PDF

causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa (PsA) is a common etiology of bacteria-mediated lower respiratory tract infections, including pneumonia, hospital acquired pneumonia (HAP), and ventilator-associated pneumonia (VAP). Given the paucity of novel antibiotics in our foreseeable pipeline, developing novel non-antibiotic antimicrobial therapies saliently targeting drug resistant PsA isolates remains a priority. Lytic bacteriophages (or phages) have come under scrutiny as a potential antimicrobial for refractory bacterial infections.

View Article and Find Full Text PDF

The U.S. Food and Drug Administration (FDA) hosted a public workshop entitled "Advancing Animal Models for Antibacterial Drug Development" on 5 March 2020.

View Article and Find Full Text PDF

is the leading cause of antibiotic-associated colitis. Here, we report that lemon exosome-like nanoparticles (LELNs) manipulated probiotics to inhibit infection (CDI). LELN-manipulated GG (LGG) and ST-21 (STH) (LELN-LS) decrease CDI mortality via an LELN-mediated increase in bile resistance and gut survivability.

View Article and Find Full Text PDF

Background: Plasma gelsolin (pGSN) is an abundant circulating protein quickly consumed by extensive tissue damage. Marked depletion is associated with later poor outcomes in diverse clinical circumstances. Repletion with recombinant human (rhu)-pGSN in animal models of inflammation lessens mortality and morbidity.

View Article and Find Full Text PDF

causes a rapid, lethal disease referred to as plague. actively inhibits the innate immune system to generate a noninflammatory environment during early stages of infection to promote colonization. The ability of to create this early noninflammatory environment is in part due to the action of seven Yop effector proteins that are directly injected into host cells via a type 3 secretion system (T3SS).

View Article and Find Full Text PDF

Yersinia pestis is the causative agent of plague and is a re-emerging pathogen that also has the potential as a biological weapon, necessitating the development of a preventive vaccine. Despite intense efforts for the last several decades, there is currently not a vaccine approved by the FDA. The rF1-V vaccine adjuvanted with Alhydrogel is a lead candidate subunit vaccine for plague and generates a strong Th2-mediate humoral response with a modest Th1 cellular response.

View Article and Find Full Text PDF

Yersinia pestis is able to survive and replicate within macrophages, while also being able to live in the extracellular milieu of the host. Assays that facilitate better understanding of how Y. pestis survives intracellularly and subverts normal host antimicrobial defenses require the ability to monitor intracellular Y.

View Article and Find Full Text PDF

Gene duplication and subsequent evolutionary divergence have allowed conserved proteins to develop unique roles. The MarR family of transcription factors (TFs) has undergone extensive duplication and diversification in bacteria, where they act as environmentally responsive repressors of genes encoding efflux pumps that confer resistance to xenobiotics, including many antimicrobial agents. We have performed structural, functional, and genetic analyses of representative members of the SlyA/RovA lineage of MarR TFs, which retain some ancestral functions, including repression of their own expression and that of divergently transcribed multidrug efflux pumps, as well as allosteric inhibition by aromatic carboxylate compounds.

View Article and Find Full Text PDF

Silicosis is a lung inflammatory disease caused by chronic exposure to crystalline silica (CS). Leukotriene B (LTB) plays an important role in neutrophilic inflammation, which drives silicosis and promotes lung cancer. In this study, we examined the mechanisms involved in CS-induced inflammatory pathways.

View Article and Find Full Text PDF

has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, prevents phagolysosome maturation and establishes a modified compartment termed the -containing vacuole (YCV).

View Article and Find Full Text PDF

The study of intracellular bacterial pathogens in cell culture hinges on inhibiting extracellular growth of the bacteria in cell culture media. Aminoglycosides, like gentamicin, were originally thought to poorly penetrate eukaryotic cells, and thus, while inhibiting extracellular bacteria, these antibiotics had limited effect on inhibiting the growth of intracellular bacteria. This property led to the development of the antibiotic protection assay to study intracellular pathogens .

View Article and Find Full Text PDF

Gram-negative bacteria use siderophores, outer membrane receptors, inner membrane transporters and substrate-binding proteins (SBPs) to transport transition metals through the periplasm. The SBPs share a similar protein fold that has undergone significant structural evolution to communicate with a variety of differentially regulated transporters in the cell. In Yersinia pestis, the causative agent of plague, YfeA (YPO2439, y1897), an SBP, is important for full virulence during mammalian infection.

View Article and Find Full Text PDF

A number of bacterial pathogens require the ZnuABC Zinc (Zn) transporter and/or a second Zn transport system to overcome Zn sequestration by mammalian hosts. Previously we have shown that in addition to ZnuABC, Yersinia pestis possesses a second Zn transporter that involves components of the yersiniabactin (Ybt), siderophore-dependent iron transport system. Synthesis of the Ybt siderophore and YbtX, a member of the major facilitator superfamily, are both critical components of the second Zn transport system.

View Article and Find Full Text PDF