Comp Biochem Physiol C Toxicol Pharmacol
January 2022
Variations in drought responses exhibited by cohabiting tree species such as Acer sacharrum and Quercus alba have often been attributed to differences in rooting depth or water accessibility. A. sacharrum is thought to be a shallow rooted species, and is assumed to not have access to the deep and stable water resources available to Q.
View Article and Find Full Text PDFAccurate understanding of plant responses to water stress is increasingly important for quantification of ecosystem carbon and water cycling under future climates. Plant water-use strategies can be characterized across a spectrum of water stress responses, from tight stomatal control (isohydric) to distinctly less stomatal control (anisohydric). A recent and popular classification method of plant water-use strategies utilizes the regression slope of predawn and midday leaf water potentials, σ, to reflect the coupling of soil water availability (predawn leaf water potential) and stomatal dynamics (daily decline in leaf water potential).
View Article and Find Full Text PDFDespite the important role vegetation plays in the global water cycle, the exact controls of vegetation water use, especially the role of soil biogeochemistry, remain elusive. In this study, we reveal a new mechanism of soil biogeochemical control of large-scale vegetation water use. Nitrate and sulfate deposition from fossil fuel burning have caused substantial soil acidification, leading to the leaching of soil base cations.
View Article and Find Full Text PDF