We demonstrate the feasibility for minimizing electrophoretic analysis times of transient chemical species by inducing nascent, oppositely charged photochemical products to migrate in opposite directions from their point of creation. In this approach, separate probe sites are positioned within an electrophoretic channel both upfield and downfield from a photoreaction site formed by high-numerical-aperture optics, with positively charged (and in some cases neutral) components migrating toward one probe site and negatively charged species migrating in the opposite direction, toward the second probe site. As a proof-of-concept, fluorescent photoproducts of the hydroxyindoles, 5-hydroxytryptamine (serotonin), 5-hydroxytrptophan, and 5-hydroxyindole-2-carboxylic acid, are formed within a geometrically modified capillary and are transported electrophoretically and electroosmotically to probe sites several micrometers away.
View Article and Find Full Text PDFWe report photochemical and photophysical studies of a multiphoton-excited reaction of serotonin that previously has been shown to generate a photoproduct capable of emitting broadly in the visible spectral region. The current studies demonstrate that absorption of near-infrared light by an intermediate state prepared via three-photon absorption enhances the photoproduct formation yield, with the largest action cross sections ( approximately 10(-19) cm(2)) observed at the short-wavelength limit of the titanium:sapphire excitation source. The intermediate state is shown to persist for at least tens of nanoseconds and likely to be different from a previously reported oxygen-sensitive intermediate.
View Article and Find Full Text PDFAlthough analysis strategies exist for probing a diverse array of molecular properties, most of these approaches are not amenable to the study of reaction intermediates and other transient species. Separations in particular can provide detailed information on attributes not readily measured by spectroscopy but typically are performed over time scales much longer than the life span of highly unstable compounds. Here we report the development of an electrophoretic strategy that dramatically extends the practical speed limit for fractionations and demonstrate its utility in examining transient hydroxyindole photoproducts.
View Article and Find Full Text PDF