Working memory (WM) is the ability to maintain and manipulate information 'in mind'. The neural codes underlying WM have been a matter of debate. We simultaneously recorded the activity of hundreds of neurons in the lateral prefrontal cortex of male macaque monkeys during a visuospatial WM task that required navigation in a virtual 3D environment.
View Article and Find Full Text PDFSingle neurons in primate dorsolateral prefrontal cortex (dLPFC) are known to encode working memory (WM) representations of visual space. Psychophysical studies have shown that the horizontal and vertical meridians of the visual field can bias spatial information maintained in WM. However, most studies and models have tacitly assumed that dLPFC neurons represent mnemonic space homogenously.
View Article and Find Full Text PDFWorking memory (WM) is the ability to remember and manipulate information for short time intervals. Recent studies have proposed that sustained firing encoding the contents of WM is ubiquitous across cortical neurons. We review here the collective evidence supporting this claim.
View Article and Find Full Text PDFNeurons in the primate lateral prefrontal cortex (LPFC) encode working memory (WM) representations via sustained firing, a phenomenon hypothesized to arise from recurrent dynamics within ensembles of interconnected neurons. Here, we tested this hypothesis by using microelectrode arrays to examine spike count correlations ( ) in LPFC neuronal ensembles during a spatial WM task. We found a pattern of pairwise during WM maintenance indicative of stronger coupling between similarly tuned neurons and increased inhibition between dissimilarly tuned neurons.
View Article and Find Full Text PDFNeurons within the primate dorsolateral prefrontal cortex (dlPFC) are clustered in microcolumns according to their visuospatial tuning. One issue that remains poorly investigated is how this anatomical arrangement influences functional interactions between neurons during behavior. To investigate this question we implanted 4 mm×4 mm multielectrode arrays in two macaques' dlPFC area 8a and measured spike count correlations (rsc ) between responses of simultaneously recorded neurons when animals maintained stationary gaze.
View Article and Find Full Text PDF