Conventional immunosuppressive functions of CD4Foxp3 regulatory T cells (Tregs) in type 1 diabetes (T1D) pathogenesis have been well described, but whether Tregs have additional non-immunological functions supporting tissue homeostasis in pancreatic islets is unknown. Within the last decade novel tissue repair functions have been ascribed to Tregs. One function is production of the epidermal growth factor receptor (EGFR) ligand, amphiregulin, which promotes tissue repair in response to inflammatory or mechanical tissue injury.
View Article and Find Full Text PDFThymic presentation of self-antigens is critical for establishing a functional yet self-tolerant T-cell population. Hybrid peptides formed through transpeptidation within pancreatic β-cell lysosomes have been proposed as a new class of autoantigens in type 1 diabetes (T1D). While the production of hybrid peptides in the thymus has not been explored, due to the nature of their generation, it is thought to be highly unlikely.
View Article and Find Full Text PDFThe contribution of low-affinity T cells to autoimmunity in the context of polyclonal T-cell responses is understudied due to the limitations in their capture by tetrameric reagents and low level of activation in response to antigenic stimulation. As a result, low-affinity T cells are often disregarded as nonantigen-specific cells irrelevant to the immune response. Our study aimed to assess how the level of self-antigen reactivity shapes T-cell lineage and effector responses in the context of spontaneous tissue-specific autoimmunity observed in NOD mice.
View Article and Find Full Text PDFAccumulating evidence supports a critical role for posttranslationally modified (PTM) islet neoantigens in type 1 diabetes. However, our understanding regarding thymic development and peripheral activation of PTM autoantigen-reactive T cells is still limited. Using HLA-DR4 humanized mice, we observed that deamidation of GAD65115-127 generates a more immunogenic epitope that recruits T cells with promiscuous recognition of both the deamidated and native epitopes and reduced frequency of regulatory T cells.
View Article and Find Full Text PDFCritical insights into the etiology of type 1 diabetes (T1D) came from genome-wide association studies that unequivocally connected genetic susceptibility to immune cell function. At the top of the susceptibility are genes involved in regulatory T-cell (Treg) function and development. The advances in epigenetic and transcriptional analyses have provided increasing evidence for Treg dysfunction in T1D.
View Article and Find Full Text PDFHumans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described.
View Article and Find Full Text PDFType 1 diabetes is an autoimmune-mediated disease that culminates in the targeted destruction of insulin-producing β-cells. CD4 responses in NOD mice are dominated by insulin epitope B:9-23 (InsB) specificity, and mutation of the key T-cell receptor (TCR) contact residue within the epitope prevents diabetes development. However, it is not clear how insulin self-antigen controls the selection of autoimmune and regulatory T cells (Tregs).
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2019
The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CXCR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2017
The strongest susceptibility allele for Type 1 Diabetes (T1D) is human leukocyte antigen (HLA), which supports a central role for T cells as the drivers of autoimmunity. However, the precise mechanisms that allow thymic escape and peripheral activation of beta cell antigen-specific T cells are still largely unknown. Studies performed with the non-obese diabetic (NOD) mouse have challenged several immunological dogmas, and have made the NOD mouse a key experimental system to study the steps of immunodysregulation that lead to autoimmune diabetes.
View Article and Find Full Text PDFRegulatory T cells (Tregs) use a distinct TCR repertoire and are more self-reactive compared with conventional T cells. However, the extent to which TCR affinity regulates the function of self-reactive Tregs is largely unknown. In this study, we used a two-TCR model to assess the role of TCR affinity in Treg function during autoimmunity.
View Article and Find Full Text PDFType 1 diabetes is a T cell-mediated autoimmune disease that is characterized by Ag-specific targeting and destruction of insulin-producing β cells. Although multiple studies have characterized the pathogenic potential of β cell-specific T cells, we have limited mechanistic insight into self-reactive autoimmune T cell development and their escape from negative selection in the thymus. In this study, we demonstrate that ectopic expression of insulin epitope B:9-23 (InsB) by thymic APCs is insufficient to induce deletion of high- or low-affinity InsB-reactive CD4 T cells; however, we observe an increase in the proportion and number of thymic and peripheral Foxp3 regulatory T cells.
View Article and Find Full Text PDFFor the αβ or γδTCR chains to integrate extracellular stimuli into the appropriate intracellular cellular response, they must use the 10 ITAMs found within the CD3 subunits (CD3γε, CD3δε, and ζζ) of the TCR signaling complex. However, it remains unclear whether each specific ITAM sequence of the individual subunit (γεδζ) is required for thymocyte development or whether any particular CD3 ITAM motif is sufficient. In this article, we show that mice utilizing a single ITAM sequence (γ, ε, δ, ζa, ζb, or ζc) at each of the 10 ITAM locations exhibit a substantial reduction in thymic cellularity and limited CD4CD8 (double-negative) to CD4CD8 (double-positive) maturation because of low TCR expression and signaling.
View Article and Find Full Text PDFSingle-cell paired TCR identification is a powerful tool, but has been limited in its previous incompatibility with further functional analysis. The current protocol describes a method to clone and functionally evaluate in vivo TCRs derived from single antigen-responsive human T cells and monoclonal T cell lines. We have improved upon current PCR-based TCR sequencing protocols by developing primers that allow amplification of human TCRα and TCRβ variable regions, while incorporating specific restriction cut sites for direct subcloning into the template retroviral vector.
View Article and Find Full Text PDFThe TCR:CD3 complex transduces signals that are critical for optimal T cell development and adaptive immunity. In resting T cells, the CD3ε cytoplasmic tail associates with the plasma membrane via a proximal basic-rich stretch (BRS). In this study, we show that mice lacking a functional CD3ε-BRS exhibited substantial reductions in thymic cellularity and limited CD4- CD8- double-negative (DN) 3 to DN4 thymocyte transition, because of enhanced DN4 TCR signaling resulting in increased cell death and TCR downregulation in all subsequent populations.
View Article and Find Full Text PDFThe use of retrogenic mice offers a rapid and flexible approach to T cell receptor (TCR)-transgenic mice. By transducing bone marrow progenitor cells with a retrovirus that encodes a given TCR-α/β subunit, TCR-retrogenic mice can be generated in as few as 4-6 weeks, whereas conventional TCR transgenics can take 6 months or longer. In this updated protocol, we have increased the efficiency of the bone marrow transduction and bone marrow reconstitution compared with our previously published protocol.
View Article and Find Full Text PDF