We demonstrate a hybrid time-frequency spectroscopic method for simultaneous temperature/pressure measurements in nonreacting compressible flows with known gas composition. Hybrid femtosecond-picosecond, pure-rotational coherent anti-Stokes Raman scattering (CARS), with two independent, time-delayed probe pulses, is deployed for single-laser-shot measurements of temperature and pressure profiles along an ∼5-mm line. The theory of dual-probe CARS is presented, along with a discussion of the iterative fitting of experimental spectra.
View Article and Find Full Text PDFWe report pure-rotational N-N, N-air, and O-air S-branch linewidths for temperatures of 80-200 K by measuring the time-dependent decay of rotational Raman coherences in an isentropic free-jet expansion from a sonic nozzle. We recorded pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) spectra along the axial centerline of the underexpanded jet, within the barrel shock region upstream of the Mach disk. The dephasing of the pure-rotational Raman coherence was monitored using probe-time-delay scans at different axial positions in the jet, corresponding to varying local temperatures and pressures.
View Article and Find Full Text PDF