Publications by authors named "Matthew Kalp"

Class D β-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial β-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel β-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2'-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important β-lactamase that inactivates carbapenems and is found in A.

View Article and Find Full Text PDF

Raman spectra, obtained using a Raman microscope, offer a unique and incisive approach to follow interactions and reactions inside a single crystal under soak-in or soak-out conditions. The utility of this approach derives from the finding that the Raman spectra from single macromolecular crystals, under normal (non-resonance) conditions, are extremely stable, with a low "light background," and provide ideal platforms for Raman difference spectroscopy. In turn, this allows the interrogation of sub-molecular changes in very large and complex macromolecular environments.

View Article and Find Full Text PDF

Mechanism-based inhibitors of class A beta-lactamases, such as sulbactam, undergo a complex series of chemical reactions in the enzyme active site. Formation of a trans-enamine acyl-enzyme via a hydrolysis-prone imine is responsible for transient inhibition of the enzyme. Although the imine to enamine tautomerization is crucial to inhibition of the enzyme, there are no experimental data to suggest how this chemical transformation is catalyzed in the active site.

View Article and Find Full Text PDF

Extended-spectrum beta-lactamases (ESBLs) are derivatives of enzymes such as SHV-1 and TEM-1 that have undergone site-specific mutations that enable them to hydrolyze, and thus inactivate, oxyimino-cephalosporins, such as cefotaxime and ceftazidime. X-ray crystallographic data provide an explanation for this in that the mutations bring about an expansion of the binding pocket by moving a beta-strand that forms part of the active site wall. Another characteristic of ESBLs that has remained enigmatic is the fact that they are "hypersusceptible" to inhibition by the mechanism-based inactivators tazobactam, sulbactam, and clavulanic acid.

View Article and Find Full Text PDF

Tazobactam, sulbactam, and clavulanic acid are the only beta-lactamase inhibitors in clinical use. Comparative inhibitory activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases conclude that tazobactam is superior to both clavulanic acid and sulbactam. Thus far, the majority of explanations for this phenomenon have relied on kinetic studies, which report differences in the ligands' apparent dissociation constants and number of turnovers before inactivation.

View Article and Find Full Text PDF

The reactions between single crystals of the SHV-1 beta-lactamase enzyme and the carbapenems, meropenem, imipenem, and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Delta (2)-pyrroline and a more tightly bound Delta (1)-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus.

View Article and Find Full Text PDF

The partnering of a beta-lactam with a beta-lactamase inhibitor is a highly effective strategy that can be used to combat bacterial resistance to beta-lactam antibiotics mediated by serine beta-lactamases (EC 3.2.5.

View Article and Find Full Text PDF

A 6-alkylidiene penam sulfone, SA-1-204, is an efficient inhibitor of both SHV-1 and OXA-1 beta-lactamases with K(I) = 42 +/- 4 nm and 1.0 +/- 0.1 microm, respectively.

View Article and Find Full Text PDF