Publications by authors named "Matthew J Wilkinson"

Supramolecular chemistry has grown into a major scientific field over the last thirty years and has fueled numerous developments at the interfaces with biology and physics, clearly demonstrating its potential at a multidisciplinary level. Simultaneously, organometallic chemistry and transition metal catalysis have matured in an incredible manner, broadening the pallet of tools available for chemical conversions. The interface between supramolecular chemistry and transition metal catalysis has received surprisingly little attention.

View Article and Find Full Text PDF

The four arsines, As{C6H3(o-CH3)(p-Z)}3{Z=H (2a) or OMe (2b)} and As{C6H3(o-CHMe2)(p-Z)}3{Z=H (2c) or OMe (2d)} react with [PdCl2(NCPh)2] or [PtCl2(NCBu(t))2] to give trans-[MCl2L2] or trans-[M2Cl2(mu-Cl)2L2]. The crystal structures of trans-[PdCl2(2a)2] and [PtCl2(2d)2] have been determined, the latter as its dichloromethane solvate. The structures show that in these complexes, the ligands adopt gga type conformations as do all analogous tri-o-tolyl- and tri-o-isopropylphenylphosphines in square-planar and octahedral complexes.

View Article and Find Full Text PDF

The coordination chemistry of the four phosphines, P{C6H3(o-CH3)(p-Z)}3 where Z = H (1a) or OMe (1b) and P{C6H3(o-CHMe2)(p-Z)}3 Z = H (1c) or OMe (1d) with platinum(II) and palladium(II) is reported. Mononuclear complexes trans-[PdCl2L2](L = 1a,b) and trans-[PtCl2L2](L = 1a-c) have been prepared and the crystal structures of trans-[PdCl2(1b)2] and trans-[PtCl2(1c)2] as their dichloromethane solvates have been determined. The structures show that in these complexes, the ligands adopt g+ g+ a conformations.

View Article and Find Full Text PDF