Publications by authors named "Matthew J Riese"

Two isoforms of diacylglycerol kinases (DGKs), DGKα and DGKζ, are primarily responsible for terminating DAG-mediated activation of Ras and PKCθ pathways in T cells. A direct comparison of tumor growth between mice lacking each isoform has not been undertaken. We evaluated the growth of three syngeneic tumor cell lines in mice lacking either DGKα or DGKζ in the presence or absence of treatment with anti-PD1 and determined that (i) mice deficient in DGKζ conferred enhanced control of tumor relative to mice deficient in DGKα and (ii) deficiency of DGKζ acted additively with anti-PD1 in tumor control.

View Article and Find Full Text PDF

The signaling adapter MyD88 is critical for immune cell activation in response to viral or bacterial pathogens via several TLRs, IL-1βR and IL-18R. However, the essential role of MyD88 during activations mediated by germline-encoded NK cell receptors (NKRs), such as Ly49H or NKG2D, has yet to be investigated. To define the NK cell-intrinsic function of MyD88, we generated a novel NK cell conditional knockout mouse for MyD88 (Myd88Ncr1).

View Article and Find Full Text PDF

Background & Aims: Pancreatic ductal adenocarcinoma (PDA) is a lethal chemoresistant cancer that exhibits early metastatic spread. The highly immunosuppressive PDA tumor microenvironment renders patients resistant to emerging immune-targeted therapies. Building from our prior work, we evaluated stimulator of interferon genes (STING) agonist activation of PDA cell interferon-α/β-receptor (IFNAR) signaling in systemic antitumor immune responses.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T-cell therapy is an emerging option for cancer treatment, but its efficacy is limited, especially in solid tumors. This is partly because the CAR T cells become dysfunctional and exhausted in the tumor microenvironment. However, the key pathways responsible for impaired function of exhausted cells remain unclear, which is essential to overcome CAR T-cell exhaustion.

View Article and Find Full Text PDF

Immunotherapy with monoclonal antibodies targeting immune checkpoint molecules, including programmed death-1 (PD-1), PD ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, has become prominent in the treatment of many types of cancer. However, a significant number of patients treated with immune checkpoint inhibitors (ICIs) develop immune-related adverse events (irAEs). irAEs can affect any organ system, and although most are clinically manageable, irAEs can result in mortality or long-term morbidity.

View Article and Find Full Text PDF

During an immune response, natural killer (NK) cells activate specific metabolic pathways to meet the increased energetic and biosynthetic demands associated with effector functions. Here, we found activation of NK cells during infection-augmented transcription of genes encoding mitochondria-associated proteins in a manner dependent on the transcriptional coactivator PGC-1α. Using an -based conditional knockout mouse, we found that PGC-1α was crucial for optimal NK cell effector functions and bioenergetics, as the deletion of PGC-1α was associated with decreased cytotoxic potential and cytokine production along with altered ADP/ATP ratios.

View Article and Find Full Text PDF

The transcriptional activation and repression during NK cell ontology are poorly understood. Here, using single-cell RNA-sequencing, we reveal a novel role for T-bet in suppressing the immature gene signature during murine NK cell development. Based on transcriptome, we identified five distinct NK cell clusters and define their relative developmental maturity in the bone marrow.

View Article and Find Full Text PDF

It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs).

View Article and Find Full Text PDF

Adenosine mediates immunosuppression within the tumor microenvironment through triggering adenosine 2A receptors (A2AR) on immune cells. To determine whether this pathway could be targeted as an immunotherapy, we performed a phase I clinical trial with a small-molecule A2AR antagonist. We find that this molecule can safely block adenosine signaling .

View Article and Find Full Text PDF

Natural killer (NK) cells generate proinflammatory cytokines that are required to contain infections and tumor growth. However, the posttranscriptional mechanisms that regulate NK cell functions are not fully understood. Here, we define the role of the microRNA cluster known as (which includes , and ) in NK cell-mediated proinflammatory responses.

View Article and Find Full Text PDF

Asthma is a chronic allergic inflammatory airway disease caused by aberrant immune responses to inhaled allergens, which leads to airway hyperresponsiveness (AHR) to contractile stimuli and airway obstruction. Blocking T helper 2 (T2) differentiation represents a viable therapeutic strategy for allergic asthma, and strong TCR-mediated ERK activation blocks T2 differentiation. Here, we report that targeting diacylglycerol (DAG) kinase zeta (DGKζ), a negative regulator of DAG-mediated cell signaling, protected against allergic asthma by simultaneously reducing airway inflammation and AHR though independent mechanisms.

View Article and Find Full Text PDF

Natural killer (NK) cells are critical to both innate and adaptive immunity. However, the development and heterogeneity of human NK cells are yet to be fully defined. Using single-cell RNA-sequencing technology, here we identify distinct NK populations in human bone marrow and blood, including one population expressing higher levels of immediate early genes indicative of a homeostatic activation.

View Article and Find Full Text PDF

Pancreatic cancer is characterized by an immune suppressive stromal reaction that creates a barrier to therapy. A murine transgenic pancreatic cancer cell line that recapitulates human disease was used to test whether a STimulator of Interferon Genes (STING) agonist could reignite immunologically inert pancreatic tumors. STING agonist treatment potently changed the tumor architecture, altered the immune profile, and increased the survival of tumor-bearing mice.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGKs) are a family of enzymes that convert diacylglycerol (DAG) into phosphatidic acid (PA). The ζ isoform of DGK (DGKζ) has been reported to inhibit T-cell responsiveness by downregulating intracellular levels of DAG. However, its role in platelet function remains undefined.

View Article and Find Full Text PDF

We report long-term clinical outcomes and immune responses observed from a phase 1 trial of agonist CD40 monoclonal antibody (mAb) and blocking CTLA-4 mAb in patients with metastatic melanoma. Twenty-four patients previously untreated with checkpoint blockade were enrolled. The agonistic CD40 mAb CP-870,893 and the CTLA-4 blocking mAb tremelimumab were dosed concomitantly every 3 weeks and 12 weeks, respectively, across four dose combinations.

View Article and Find Full Text PDF

Inhibitory cell surface proteins on T cells are often dynamically regulated, which contributes to their physiologic function. PECAM-1 (CD31) is an inhibitory receptor that facilitates TGF-β-mediated suppression of T cell activity. It is well established in CD4 T cells that PECAM-1 is expressed in naïve recent thymic emigrants, but is down-regulated after acute T cell activation and absent from memory cells.

View Article and Find Full Text PDF

Targeting negative regulators downstream of the T cell receptor (TCR) represents a novel strategy to improve cancer immunotherapy. Two proteins that serve as critical inhibitory regulators downstream of the TCR are diacylglycerol kinase ζ (DGKζ), a regulator of Ras and PKC-θ signaling, and Casitas b-lineage proto-oncogene b (Cbl-b), an E3 ubiquitin ligase that predominantly regulates PI(3)K signaling. We sought to compare the signaling and functional effects that result from deletion of DGKζ, Cbl-b, or both (double knockout, DKO) in T cells, and to evaluate tumor responses generated in a clinically relevant orthotopic pancreatic tumor model.

View Article and Find Full Text PDF

Efforts to improve the efficacy of adoptive T-cell therapies and immune checkpoint therapies in myelogenous leukemia are desired. In this study, we evaluated the antileukemia activity of adoptively transferred polyclonal cancer antigen-reactive T cells deficient in the regulator diacylglycerol kinase zeta (DGKζ) with or without PD-1/PD-L1 blockade. In the C1498 mouse model of myeloid leukemia, we showed that leukemia was eradicated more effectively in DGKζ-deficient (DGKζ) mice than wild-type mice.

View Article and Find Full Text PDF

Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the metabolism of diacylglycerol (DAG). Two isoforms of DGK, DGKα, and DGKζ, specifically regulate the pool of DAG that is generated as a second messenger after stimulation of the T cell receptor (TCR). Deletion of either isoform in mouse models results in T cells bearing a hyperresponsive phenotype and enhanced T cell activity against malignancy.

View Article and Find Full Text PDF

Receptors on T and NK cells systematically propagate highly complex signaling cascades that direct immune effector functions, leading to protective immunity. While extensive studies have delineated hundreds of signaling events that take place upon receptor engagement, the precise molecular mechanism that differentially regulates the induction or repression of a unique effector function is yet to be fully defined. Such knowledge can potentiate the tailoring of signal transductions and transform cancer immunotherapies.

View Article and Find Full Text PDF

Transforming growth factor-β (TGF-β) is an immunosuppressive cytokine that inhibits the proinflammatory functions of T cells, and it is a major factor in abrogating T cell activity against tumors. Canonical TGF-β signaling results in the activation of Smad proteins, which are transcription factors that regulate target gene expression. We found that the cell surface molecule platelet endothelial cell adhesion molecule-1 (PECAM-1) facilitated noncanonical (Smad-independent) TGF-β signaling in T cells.

View Article and Find Full Text PDF

DGK-ζ is a negative regulator of TCR signaling that causes degradation of the second messenger DAG, terminating DAG-mediated activation of Ras and PKCθ. Cytotoxic T cells deficient in DGK-ζ demonstrate enhanced effector functions in vitro and antitumor activity in vivo, perhaps because of insensitivity to inhibitory cytokines. We sought to determine whether the enhanced responsiveness of DGK-ζ-deficient T cells renders them insensitive to the inhibitory cytokine TGF-β and to determine how the loss of DGK-ζ facilitates this insensitivity.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are a subset of CD4(+) T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4(+) T cells (Tconvs). The role of the TCR and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation.

View Article and Find Full Text PDF

The intracellular spatiotemporal organization of signaling events is critical for normal cellular function. In response to environmental stimuli, cells utilize highly organized signaling pathways that are subject to multiple layers of regulation. However, the molecular mechanisms that coordinate these complex processes remain an enigma.

View Article and Find Full Text PDF