Publications by authors named "Matthew J Pickin"

Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen. Its RNA genome consists of two negative-sense segments (L and M) with one gene each, and one ambisense segment (S) with two opposing genes separated by the noncoding "intergenic region" (IGR). These vRNAs and the complementary cRNAs are encapsidated by nucleoprotein (N).

View Article and Find Full Text PDF

N-methyladenosine (mA) is one of the most abundant modifications of cellular RNA, where it serves various functions. mA methylation of many viral RNA species has also been described; however, little is known about the mA epitranscriptome of haemorrhagic fever-causing viruses like Ebola virus (EBOV). Here, we analysed the importance of the methyltransferase METTL3 for the life cycle of this virus.

View Article and Find Full Text PDF

Many negative-sense RNA viruses, including the highly pathogenic Ebola virus (EBOV), use cytoplasmic inclusion bodies (IBs) for viral RNA synthesis. However, it remains unclear how viral mRNAs are exported from these IBs for subsequent translation. We recently demonstrated that the nuclear RNA export factor 1 (NXF1) is involved in a late step in viral protein expression, i.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that causes a severe, often fatal, hemorrhagic disease throughout Africa, Asia, and Southeast Europe. A wide variety of strains are circulating in the field which broadly correlate to their geographic distribution. The viral determinants of pathogenicity remain unclear, as does the contribution of strain-specific differences to pathology.

View Article and Find Full Text PDF

Rift Valley fever phlebovirus (RVFV) is an arthropod-borne virus that has caused substantial epidemics throughout Africa and in the Arabian Peninsula. The virus can cause severe disease in livestock and humans and therefore the control and prevention of viral outbreaks is of utmost importance. The epidemiology of RVFV has some particular characteristics.

View Article and Find Full Text PDF

Paramyxoviruses can establish persistent infections both in vitro and in vivo, some of which lead to chronic disease. However, little is known about the molecular events that contribute to the establishment of persistent infections by RNA viruses. Using parainfluenza virus type 5 (PIV5) as a model we show that phosphorylation of the P protein, which is a key component of the viral RNA polymerase complex, determines whether or not viral transcription and replication becomes repressed at late times after infection.

View Article and Find Full Text PDF