Publications by authors named "Matthew J Pestrak"

Pseudomonas aeruginosa (P.a.) infection accounts for nearly 20% of all cases of hospital acquired pneumonia with mortality rates >30%.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) occurring after artificial joint replacement is a major clinical issue requiring multiple surgeries and antibiotic interventions. is the bacterium most commonly responsible for PJI. Recent research has shown that staphylococcal strains rapidly form aggregates in the presence of synovial fluid (SF).

View Article and Find Full Text PDF

Periprosthetic joint infections (PJIs) are a devastating complication that occurs in 2% of patients following joint replacement. These infections are costly and difficult to treat, often requiring multiple corrective surgeries and prolonged antimicrobial treatments. The Gram-positive bacterium Staphylococcus aureus is one of the most common causes of PJIs, and it is often resistant to a number of commonly used antimicrobials.

View Article and Find Full Text PDF

is an opportunistic, nosocomial bacterial pathogen that forms persistent infections due to the formation of protective communities, known as biofilms. Once the biofilm is formed, the bacteria embedded within it are recalcitrant to antimicrobial treatment and host immune defenses. Moreover, the presence of biofilms in wounds is correlated with chronic infection and delayed healing.

View Article and Find Full Text PDF

Pseudomonas aeruginosa causes devastating infections in immunocompromised individuals. Once established, P. aeruginosa infections become incredibly difficult to treat due to the development of antibiotic tolerant, aggregated communities known as biofilms.

View Article and Find Full Text PDF

Bacterial biofilms present a significant medical challenge because they are recalcitrant to current therapeutic regimes. A key component of biofilm formation in the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharides Pel and Psl, which are involved in the formation and maintenance of the structural biofilm scaffold and protection against antimicrobials and host defenses. Given that the glycoside hydrolases PelAh and PslGh encoded in the pel and psl biosynthetic operons, respectively, are utilized for in vivo exopolysaccharide processing, we reasoned that these would provide specificity to target P.

View Article and Find Full Text PDF

A key component of colonization, biofilm formation, and protection of the opportunistic human pathogen Pseudomonas aeruginosa is the biosynthesis of the exopolysaccharide Psl. Composed of a pentameric repeating unit of mannose, glucose, and rhamnose, the biosynthesis of Psl is proposed to occur via a Wzx/Wzy-dependent mechanism. Previous genetic studies have shown that the putative glycoside hydrolase PslG is essential for Psl biosynthesis.

View Article and Find Full Text PDF