Rapid restoration of blood flow is critical in treating acute ischemic stroke. Current fibrinolytic therapies using tissue plasminogen activator (tPA) are limited by low recanalization rates and risks of off-target bleeding. Here, we present a strategy using tPA immobilized on micrometer-scale beads to enhance local plasmin generation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for ischemic stroke but carries significant risks, including major hemorrhage. Additional options are needed, especially in small vessel thrombi which account for ~25% of ischemic strokes. We have previously shown that tPA-functionalized colloidal microparticles can be assembled into microwheels (µwheels) and manipulated under the control of applied magnetic fields to enable rapid thrombolysis of fibrin gels in microfluidic models of thrombosis.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is mediated by an overexpression of tumor necrosis factor-α (TNF) by mononuclear cells in the intestinal mucosa. Intravenous delivery of neutralizing anti-TNF antibodies can cause systemic immunosuppression, and up to one-third of people are non-responsive to treatment. Oral delivery of anti-TNF could reduce adverse effects; however, it is hampered by antibody degradation in the harsh gut environment during transit and poor bioavailability.
View Article and Find Full Text PDFGlaucoma is a multifactorial progressive optic neuropathy characterized by the loss of retinal ganglion cells leading to irreversible blindness. It is the leading cause of global irreversible blindness and is currently affecting over 70 million people. Elevated intraocular pressure (IOP) is considered the only modifiable risk factor and is a target of numerous treatment modalities.
View Article and Find Full Text PDFGlaucoma is the leading cause of irreversible blindness in the world, currently impacting 80 million people. Patients suffering from primary open-angle glaucoma experience aqueous humor accumulation within the eye causing an increase in intraocular pressure (IOP). The main cause of this rise in IOP is due to poor outflow of aqueous humor through the trabecular meshwork (TM), a tissue composed of collagen and glycosaminoglycans (GAGs) embedded with TM cells.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
August 2021
Dental cavities are the most prevalent, preventable disease worldwide providing a need for robust treatment options to restore both the form and function of decaying teeth. Here is a presentation of a possible regenerative pulp capping agent that can serve to restore tooth function while regenerating healthy dentin tissue over a long period of time. To achieve this goal a material needs to crosslink quickly, be structurally rigid, and support the proliferation and differentiation of stem cells contained within the dental pulp.
View Article and Find Full Text PDFGlaucoma is a degenerative eye disease in which damage to the optic nerve leads to a characteristic loss of vision. The primary risk factor for glaucoma is an increased intraocular pressure that is caused by an imbalance of aqueous humor generation and subsequent drainage through the trabecular meshwork (TM) drainage system. The small size, donor tissue limitations, and high complexity of the TM make it difficult to research the relationship between the TM cells and their immediate environment.
View Article and Find Full Text PDFDiabetics are prone to chronic wounds that have slower healing, and methods of accelerating the wound closure and to ensure protection from infections are critically needed. MicroRNA-146a gets dysregulated in diabetic wounds and injection of this microRNA combined with reactive oxygen species-scavenging cerium oxide nanoparticles (CNPs) can reduce inflammation and improve wound healing; however, a better delivery method than intradermal injections is needed. Here we demonstrate a biomaterial system of zwitterionic cryogels (gels formed below freezing temperatures) laden with CNP-miR146a that are topically applicable, injectable, self-healable, and provide sustained release of the therapeutic molecules.
View Article and Find Full Text PDF