Staphylococcus aureus has evolved mechanisms to cope with low iron (Fe) availability in host tissues. Staphylococcus aureus uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake.
View Article and Find Full Text PDFThe gut microbiota plays a critical role in human health and disease. Microbial community assembly and succession early in life are influenced by numerous factors. In turn, assembly of this microbial community is known to influence the host, including immune system development, and has been linked to outcomes later in life.
View Article and Find Full Text PDFhas evolved mechanisms to cope with low iron (Fe) availability in host tissues. uses the ferric uptake transcriptional regulator (Fur) to sense titers of cytosolic Fe. Upon Fe depletion, apo-Fur relieves transcriptional repression of genes utilized for Fe uptake.
View Article and Find Full Text PDFDuring intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients, such as iron. Pathogens scavenge iron using siderophores, including enterobactin; however, this strategy is counteracted by host protein lipocalin-2, which sequesters iron-laden enterobactin. Although this iron competition occurs in the presence of gut bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored.
View Article and Find Full Text PDFDuring intestinal inflammation, host nutritional immunity starves microbes of essential micronutrients such as iron. Pathogens scavenge iron using siderophores, which is counteracted by the host using lipocalin-2, a protein that sequesters iron-laden siderophores, including enterobactin. Although the host and pathogens compete for iron in the presence of gut commensal bacteria, the roles of commensals in nutritional immunity involving iron remain unexplored.
View Article and Find Full Text PDFZinc (Zn) is an essential micronutrient and cofactor for up to 10% of proteins in living organisms. During Zn limitation, specialized enzymes called metallochaperones are predicted to allocate Zn to specific metalloproteins. This function has been putatively assigned to G3E GTPase COG0523 proteins, yet no Zn metallochaperone has been experimentally identified in any organism.
View Article and Find Full Text PDFAminoglycoside antibiotics rely on the proton motive force to enter the bacterial cell, and facultative anaerobes like Staphylococcus aureus can shift energy generation from respiration to fermentation, becoming tolerant of aminoglycosides. Following this metabolic shift, high concentrations of aminoglycosides are required to eradicate S. aureus infections, which endangers the host due to the toxicity of aminoglycosides.
View Article and Find Full Text PDF