Investigations into the carbon cycle and how it responds to climate change at the national scale are important for a comprehensive understanding of terrestrial carbon cycle and global change issues. Contributions of carbon fluxes to the terrestrial sink and the effects on climate change are still not fully understood. In this study, we aimed to explore the relationship between ecosystem production (GPP/SIF/NDVI) and net ecosystem carbon exchange (NEE) and to investigate the sensitivity of carbon fluxes to climate change at different spatio-temporal scales.
View Article and Find Full Text PDFOver 50 years ago, Eugene Odum postulated that mature or climax forests reside in carbon neutrality. As climate change rose to prominence in the international environmental agenda, the neutrality hypothesis transformed from an ecological principle to a justification for using forest management in combating climate change. Despite persistent efforts, Odum's neutrality hypothesis has resisted both confirmation and refutation.
View Article and Find Full Text PDFSimulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate-change studies. It is imperative to increase confidence in long-term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process-based C models by comparing simulations to experimental data from seven long-term bare-fallow (vegetation-free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom.
View Article and Find Full Text PDFIn this Letter, in "About 75% of this reduction is expected to come from emission reductions and the remaining 25% from land use, land-use change and forestry", '25%' should read '1%' and '75%' should read '99%'. In the sentence "The carbon-sink-maximizing portfolio has a small negative effect on annual precipitation (-2 mm) and no effect on air temperature (Table 1)" the word 'precipitation' was omitted. Denmark was accidentally deleted during the conversion of Fig.
View Article and Find Full Text PDFThe Paris Agreement promotes forest management as a pathway towards halting climate warming through the reduction of carbon dioxide (CO) emissions. However, the climate benefits from carbon sequestration through forest management may be reinforced, counteracted or even offset by concurrent management-induced changes in surface albedo, land-surface roughness, emissions of biogenic volatile organic compounds, transpiration and sensible heat flux. Consequently, forest management could offset CO emissions without halting global temperature rise.
View Article and Find Full Text PDFAfforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon.
View Article and Find Full Text PDFThe Gibbs free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation/quantum chemical approach at four temperatures between T = 300 and 450 K. The Gibbs free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state Gibbs free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either Kohn-Sham density functional theory or a molecular mechanics force field to determine the system's potential energy.
View Article and Find Full Text PDFKinesin is a molecular motor that hydrolyzes adenosine triphosphate (ATP) and moves along microtubules against load. While motility and atomic structures have been well-characterized for various members of the kinesin family, not much is known about ATP hydrolysis inside the active site. Here, we study ATP hydrolysis mechanisms in the kinesin-5 protein Eg5 by using combined quantum mechanics/molecular mechanics metadynamics simulations.
View Article and Find Full Text PDFMolecular cluster ions H(+)(H(2)O)(n), H(+)(pyridine)(H(2)O)(n), H(+)(pyridine)(2)(H(2)O)(n), and H(+)(NH(3))(pyridine)(H(2)O)(n) (n = 16-27) and their reactions with ammonia have been studied experimentally using a quadrupole-time-of-flight mass spectrometer. Abundance spectra, evaporation spectra, and reaction branching ratios display magic numbers for H(+)(NH(3))(pyridine)(H(2)O)(n) and H(+)(NH(3))(pyridine)(2)(H(2)O)(n) at n = 18, 20, and 27. The reactions between H(+)(pyridine)(m)(H(2)O)(n) and ammonia all seem to involve intracluster proton transfer to ammonia, thus giving clusters of high stability as evident from the loss of several water molecules from the reacting cluster.
View Article and Find Full Text PDFThe critical cluster is the threshold size above which a cluster will be more likely to grow than to evaporate. In field and laboratory measurements of new particle formation, the number of molecules of a given species in the critical cluster is commonly taken to be the slope of the log-log plot of the formation rate versus the concentration of the species. This analysis is based on an approximate form of the first nucleation theorem, which is derived with the assumption that there are no minima in the free energy surface prior to the maximum at the critical size.
View Article and Find Full Text PDFFirst-principles molecular dynamics simulations, in which the forces are computed from electronic structure calculations, have great potential to provide unique insight into structure, dynamics, electronic properties, and chemistry of interfacial systems that is not available from empirical force fields. The majority of current first-principles simulations are driven by forces derived from density functional theory with generalized gradient approximations to the exchange-correlation energy, which do not capture dispersion interactions. We have carried out first-principles molecular dynamics simulations of air-water interfaces employing a particular generalized gradient approximation to the exchange-correlation functional (BLYP), with and without empirical dispersion corrections.
View Article and Find Full Text PDFUsing first principles molecular dynamics simulations in the isobaric-isothermal ensemble (T = 300 K, p = 1 atm) with the Becke-Lee-Yang-Parr exchange/correlation functional and a dispersion correction due to Grimme, the hydrogen bonding networks of pure liquid water, methanol, and hydrogen fluoride are probed. Although an accurate density is found for water with this level of electronic structure theory, the average liquid densities for both hydrogen fluoride and methanol are overpredicted by 50 and 25%, respectively. The radial distribution functions indicate somewhat overstructured liquid phases for all three compounds.
View Article and Find Full Text PDFFirst principles Monte Carlo simulations in the Gibbs and isobaric-isothermal ensembles were performed to map the vapor-liquid coexistence curves of methanol and methane described by Kohn-Sham density functional theory using the Becke-Lee-Yang-Parr (BLYP) exchange and correlation functionals with the Grimme correction term for dispersive (D2) interactions. The simulations indicate that the BLYP-D2 description with the TZV2P basis set underpredicts the saturated vapor densities and overpredicts the saturated liquid densities and critical and boiling temperatures for both compounds. Although the deviations are quite large, these results present a significant improvement over the BLYP functional without the correction term, which misses the experimental results by a larger extent in the opposite direction.
View Article and Find Full Text PDFThe homogeneous vapor-liquid nucleation of argon has been explored at T=70 and 90 K using classical nucleation theory, semiempirical density functional theory, and Monte Carlo simulations using the aggregation-volume-bias algorithm with umbrella sampling and histogram-reweighting. In contrast with previous simulation studies, which employed only the Lennard-Jones intermolecular potential, the current studies were carried out using various pair potentials including the Lennard-Jones potential, a modified Buckingham exponential-six potential, the Barker-Fisher-Watts pair potential, and a recent ab initio potential developed using the method of effective diameters. It was found that the differences in the free energy of formation of the critical nuclei between the potentials cannot be explained solely in terms of the difference in macroscopic properties of the potentials, which gives a possible reason for the failure of classical nucleation theory.
View Article and Find Full Text PDFThe aggregation of hydrogen fluoride vapor is explored through the use of Monte Carlo simulations employing Kohn-Sham density functional theory with the exchange/correlation functional of Becke-Lee-Yang-Parr to describe the molecular interactions. Canonical ensemble simulations sampling the classical phase space were carried out for a system consisting of ten molecules at constant density (2700 A(3)/molecule) and at three different temperatures (T = 310, 350, and 390 K). Aggregation-volume-bias and configurational-bias Monte Carlo approaches (along with pre-sampling with an approximate potential) were employed to increase the sampling efficiency of cluster formation and destruction.
View Article and Find Full Text PDFThe time dependent change in the intermolecular response of solvent molecules following photoexcitation of Coumarin 102 (C102) has been measured in acetonitrile-water binary mixtures. Experiments were performed on mixtures of composition x(CH3CN) = 0.25, 0.
View Article and Find Full Text PDFBeilstein J Org Chem
October 2007
Background: Chiral base desymmetrisation of dimethyl sulfoximines could provide a general route to chiral, enantioenriched dialkyl sulfoximines with potential for use in asymmetric catalysis.
Results: Asymmetric deprotonation of N-trialkylsilyl dimethyl sulfoximines with either enantiomer of lithium N,N-bis(1-phenylethyl)amide in the presence of lithium chloride affords enantioenriched sulfoximines on electrophilic trapping. Ketones, ketimines, trialkylsilyl chlorides and activated alkyl halides may be used as electrophiles in the reaction.
A series of 30 ps first principles molecular dynamics simulations in the microcanonical ensemble were carried out to investigate transport and vibrational properties of liquid water. To allow for sufficient sampling, the thermodynamic constraints were set to an elevated temperature of around 423 K and a density of 0.71 g cm(-)(3) corresponding to the saturated liquid density for the Becke-Lee-Yang-Parr (BLYP) representation of water.
View Article and Find Full Text PDFUsing competition experiments between a range of ligands and (-)-sparteine, a reactivity series for N-Boc pyrrolidine lithiation using s-BuLi/diamines has been constructed; the results indicate that the s-BuLi/(+)-sparteine surrogate complex is more reactive than s-BuLi/(-)-sparteine and this has been exploited in the selection of ligand pairs for ligand exchange catalytic asymmetric lithiation of N-Boc pyrrolidine and lithiation of N-Boc piperidine.
View Article and Find Full Text PDFThis research addresses a comprehensive particle-based simulation study of the structural, dynamic, and electronic properties of the liquid-vapor interface of water utilizing both ab initio (based on density functional theory) and empirical (fixed charge and polarizable) models. Numerous properties such as interfacial width, hydrogen bond populations, dipole moments, and correlation times will be characterized with identical schemes to draw useful conclusions on the strengths and weakness of the proposed models for interfacial water. Our findings indicate that all models considered in this study yield similar results for the radial distribution functions, hydrogen bond populations, and orientational relaxation times.
View Article and Find Full Text PDFEfficient Monte Carlo algorithms and a mixed-basis set electronic structure program were used to compute from first principles the vapor-liquid coexistence curve of water. A water representation based on the Becke-Lee-Yang-Parr exchange and correlation functionals yields a saturated liquid density of 900 kg/m3 at 323 K and normal boiling and critical temperatures of 350 and 550 K, respectively. An analysis of the structural and electronic properties of the saturated liquid phase shows an increase of the asymmetry of the local hydrogen-bonded structure despite the persistence of a 4-fold coordination and decreases of the molecular dipole moment and of the spread of the lowest unoccupied molecular orbital with increasing temperature.
View Article and Find Full Text PDFA novel ligand exchange approach to catalytic asymmetric deprotonation-electrophilic trapping has been developed that uses 1.3 equiv of s-BuLi, 0.06-0.
View Article and Find Full Text PDF