How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours.
View Article and Find Full Text PDFWe present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates.
View Article and Find Full Text PDFIf the dark matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extrasolar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 light curves would result in large numbers of detectable events for PBHs in the mass range 5×10(-10) M(⊙) to 10(-4) M(⊙). Nondetection of these events would close almost 2 orders of magnitude of the mass window for PBH dark matter.
View Article and Find Full Text PDF