Förster resonant energy transfer (FRET)-mediated exciton diffusion through artificial nanoscale building block assemblies could be used as an optoelectronic design element to transport energy. However, so far, nanocrystal (NC) systems supported only diffusion lengths of 30 nm, which are too small to be useful in devices. Here, we demonstrate a FRET-mediated exciton diffusion length of 200 nm with 0.
View Article and Find Full Text PDFColloidal cesium lead halide perovskite nanocrystals exhibit unique photophysical properties including high quantum yields, tunable emission colors, and narrow photoluminescence spectra that have marked them as promising light emitters for applications in diverse photonic devices. Randomly oriented transition dipole moments have limited the light outcoupling efficiency of all isotropic light sources, including perovskites. In this report we design and synthesize deep blue emitting, quantum confined, perovskite nanoplates and analyze their optical properties by combining angular emission measurements with back focal plane imaging and correlating the results with physical characterization.
View Article and Find Full Text PDFCreating highly stable inorganic perovskite nanocrystals (CsPbX, where X = Cl, Br, and I) with excellent optical performance is challenging because their optical properties depend on their ionic structure and its inherent defects. Here, we present a facile and effective synthesis using a nanoconfinement strategy to grow Mn-doped CsPbCl nanocrystals embedded in dendritic mesoporous silica nanospheres (MSNs). The resulting nanocomposite is abbreviated as Cs(Pb /Mn)Cl@MSNs and can serve as the orange emitter for white light-emitting diodes (WLEDs).
View Article and Find Full Text PDFDespite the exceptional optoelectronic characteristics of the emergent perovskite nanocrystals, the ionic nature greatly limits their stability, and thus restricts their potential applications. Here we have adapted a self-assembly strategy to access a rarely reported nanorod suprastructure that provide excellent encapsulation of perovskite nanocrystals by polymer-grafted graphene oxide layers. Polyacrylic acid-grafted graphene oxide (GO-g-PAA) was used as a surface ligand during the synthesis of the CsPbX perovskite nanocrystals (NCs), yielding particles (5-12 nm) with tunable halide compositions that were homogeneously embedded in the GO-g-PAA matrix.
View Article and Find Full Text PDFWe report controllable anisotropic light emission of photons originating from vertically aligned transition dipole moments in spun-cast films of CsPbBr nanocubes. By depositing films of nanocrystals on precoated substrates we can control the packing density and resultant radiation pattern of the emitted photons. We develop a technical framework to calculate the average orientation of light emitters, i.
View Article and Find Full Text PDFControlling the alignment of the emitting molecules used as dopants in organic light-emitting diodes is an effective strategy to improve the outcoupling efficiency of these devices. To explore the mechanism behind the orientation of dopants in films of organic host materials, we synthesized a coumarin-based ligand that was cyclometalated onto an iridium core to form three phosphorescent heteroleptic molecules, (bppo)2Ir(acac), (bppo)2Ir(ppy) and (ppy)2Ir(bppo) (bppo represents benzopyranopyridinone, ppy represents 2-phenylpyridinate, and acac represents acetylacetonate). Each emitter was doped into a 4,4'-bis(N-carbazolyl)-1,1'-biphenyl host layer, and the resultant orientation of their transition dipole moment vectors was measured by angle-dependent p-polarized photoluminescent emission spectroscopy.
View Article and Find Full Text PDFSystematic changes in the exocyclic substiution of core phthalocyanine platform tune the absorption properties to yield commercially viable dyes that function as the primary light absorbers in organic bulk heterojunction solar cells. Blends of these complementary phthalocyanines absorb a broader portion of the solar spectrum compared to a single dye, thereby increasing solar cell performance. We correlate grazing incidence small angle x-ray scattering structural data with solar cell performance to elucidate the role of nanomorphology of active layers composed of blends of phthalocyanines and a fullerene derivative.
View Article and Find Full Text PDF