The addition of non-active components at the point of active pharmaceutical ingredient (API) isolation by means of co-processing is an attractive approach for improving the material properties of APIs. Simultaneously, there is increased interest in the pharmaceutical industry in continuous manufacturing processes. These often consist of liquid feeds which maintain materials in solution and mean that solids handling is avoided until the final step.
View Article and Find Full Text PDFIntegrated API and drug product processing enable molecules with high clinical efficacy but poor physicochemical characteristics to be commercialized by direct co-processing with excipients to produce advanced multicomponent intermediates. Furthermore, developing isolation-free frameworks would enable end-to-end continuous processing of drugs. The aim of this work was to purify a model API (sodium ibuprofen) and impurity (ibuprofen ethyl ester) system and then directly process it into a solid-state formulation without isolating a solid API phase.
View Article and Find Full Text PDFA highly scalable combined modular and 3D-printed falling film crystallization device is developed and demonstrated herein; the device uses a small, complex, printed overflow-based film distribution part that ensures formation of a well-distributed heated liquid film around a modular, tubular residence time/crystallizer section, enabling extended residence times to be achieved. A model API (ibuprofen) and impurity (ibuprofen ethyl ester) were used as a test system in the evaluation of the novel crystallizer design. The proposed crystallizer was run using three operational configurations: batch, cyclical batch, and continuous feed, all with intermittent removal of product.
View Article and Find Full Text PDFAdditive manufacturing or '3D printing' is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability.
View Article and Find Full Text PDF