Publications by authors named "Matthew J Eckwahl"

N6-methyladenosine (m6A) is the most abundant HIV RNA modification but the interplay between the m6A reader protein YTHDF3 and HIV replication is not well understood. We found that knockout of YTHDF3 in human CD4+ T-cells increases infection supporting the role of YTHDF3 as a restriction factor. Overexpression of the YTHDF3 protein in the producer cells reduces the infectivity of the newly produced viruses.

View Article and Find Full Text PDF

Pseudouridine (Ψ) is the most abundant RNA modification in cellular RNA present in tRNA/rRNA/snRNA and also in mRNA and long noncoding RNA (lncRNA). Elucidation of Ψ function in mRNA/lncRNA requires mapping and quantitative assessment of its modification fraction at single-base resolution. The most widely used Ψ mapping method for mRNA/lncRNA relies on its reaction with -Cyclohexyl-'-(2-morpholinoethyl)carbodiimide (CMC), forming an adduct with the Ψ base in RNA that is detectable by reverse transcription (RT) stops.

View Article and Find Full Text PDF

Advances in high-throughput sequencing have facilitated remarkable insights into the diversity and functioning of naturally occurring microbes; however, current sequencing strategies are insufficient to reveal physiological states of microbial communities associated with protein translation dynamics. Transfer RNAs (tRNAs) are core components of protein synthesis machinery, present in all living cells, and are phylogenetically tractable, which make them ideal targets to gain physiological insights into environmental microbes. Here we report a direct sequencing approach, tRNA-seq, and a software suite, tRNA-seq-tools, to recover sequences, abundance profiles, and post-transcriptional modifications of microbial tRNA transcripts.

View Article and Find Full Text PDF

The abundant RNA modification pseudouridine (Ψ) has been mapped transcriptome-wide by chemically modifying pseudouridines with carbodiimide and detecting the resulting reverse transcription stops in high-throughput sequencing. However, these methods have limited sensitivity and specificity, in part due to the use of reverse transcription stops. We sought to use mutations rather than just stops in sequencing data to identify pseudouridine sites.

View Article and Find Full Text PDF

All retroviruses package cellular RNAs into virions. Studies of murine leukemia virus (MLV) revealed that the major host cell RNAs encapsidated by this simple retrovirus were LTR retrotransposons and noncoding RNAs (ncRNAs). Several classes of ncRNAs appeared to be packaged by MLV shortly after synthesis, as precursors to tRNAs, small nuclear RNAs, and small nucleolar RNAs were all enriched in virions.

View Article and Find Full Text PDF

A fascinating aspect of retroviruses is their tendency to nonrandomly incorporate host cell RNAs into virions. In addition to the specific tRNAs that prime reverse transcription, all examined retroviruses selectively package multiple host cell noncoding RNAs (ncRNAs). Many of these ncRNAs appear to be encapsidated shortly after synthesis, before assembling with their normal protein partners.

View Article and Find Full Text PDF

Although all retroviruses recruit host cell RNAs into virions, both the spectrum of RNAs encapsidated and the mechanisms by which they are recruited remain largely unknown. Here, we used high-throughput sequencing to obtain a comprehensive description of the RNAs packaged by a model retrovirus, murine leukemia virus. The major encapsidated host RNAs are noncoding RNAs (ncRNAs) and members of the VL30 class of endogenous retroviruses.

View Article and Find Full Text PDF

RNA ligation can regulate RNA function by altering RNA sequence, structure and coding potential. For example, the function of XBP1 in mediating the unfolded protein response requires RNA ligation, as does the maturation of some tRNAs. Here, we describe a novel in vivo model in Caenorhabditis elegans for the conserved RNA ligase RtcB and show that RtcB ligates the xbp-1 mRNA during the IRE-1 branch of the unfolded protein response.

View Article and Find Full Text PDF

The budding yeast Saccharomyces cerevisiae can respond to nutritional and environmental stress by implementing a morphogenetic program wherein cells elongate and interconnect, forming pseudohyphal filaments. This growth transition has been studied extensively as a model signaling system with similarity to processes of hyphal development that are linked with virulence in related fungal pathogens. Classic studies have identified core pseudohyphal growth signaling modules in yeast; however, the scope of regulatory networks that control yeast filamentation is broad and incompletely defined.

View Article and Find Full Text PDF

The morphogenetic transition between yeast and filamentous forms of the human fungal pathogen Candida albicans is regulated by a variety of signaling pathways. How these pathways interact to orchestrate morphogenesis, however, has not been as well characterized. To address this question and to identify genes that interact with the Regulation of Ace2 and Morphogenesis (RAM) pathway during filamentation, we report the first large-scale genetic interaction screen in C.

View Article and Find Full Text PDF

Yeast filamentous growth is a stress response to conditions of nitrogen deprivation, wherein yeast colonies form pseudohyphal filaments of elongated and connected cells. As proteins mediating adhesion and transport are required for this growth transition, we expect that the protein complement at the yeast cell periphery plays a critical and tightly regulated role in pseudohyphal filamentation. To identify proteins differentially abundant at the yeast cell periphery during pseudohyphal growth, we generated quantitative proteomic profiles of plasma membrane protein preparations under conditions of vegetative growth and filamentation.

View Article and Find Full Text PDF