Objectives: Ventricular remodeling after myocardial infarction begins with massive extracellular matrix deposition and resultant fibrosis. This loss of functional tissue and stiffening of myocardial elastic and contractile elements starts the vicious cycle of mechanical inefficiency, adverse remodeling, and eventual heart failure. We hypothesized that stromal cell-derived factor 1α (SDF-1α) therapy to microrevascularize ischemic myocardium would rescue salvageable peri-infarct tissue and subsequently improve myocardial elasticity.
View Article and Find Full Text PDFUse of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months.
View Article and Find Full Text PDFFriction converts kinetic energy at sliding interfaces into lattice vibrations, but the detailed mechanisms of this process remain unresolved. Atomic force microscopy measurements reveal that changing the mass of the terminating atoms on a surface, and thus their vibrational frequencies, affects nanoscale friction substantially. We compared hydrogen- and deuterium-terminated single-crystal diamond and silicon surfaces, and in all cases the hydrogenated surface exhibited higher friction.
View Article and Find Full Text PDFTwo phosphonic acid (PA) self-assembled monolayers (SAMs) are studied on three aluminum oxide surfaces: the C and R crystallographic planes of single crystal alpha-alumina (sapphire) and an amorphous vapor-deposited alumina thin film. SAMs are either fully hydrogenated CH3(CH2)17PO3H2 or semifluorinated CF3(CF2)7(CH2)11PO3H2. Atomic force microscope (AFM) topographic imaging reveals that the deposited films are homogeneous, atomically smooth, and stable for months in the laboratory environment.
View Article and Find Full Text PDF