Publications by authors named "Matthew J Broadhead"

Hyperexcitability of motor neurons and spinal cord motor circuitry has been widely reported in the early stages of Amyotrophic Lateral Sclerosis (ALS). Changes in the relative amount of excitatory to inhibitory inputs onto a neuron (E:I synaptic ratio), possibly through a developmental shift in synapse formation in favour of excitatory transmission, could underlie pathological hyperexcitability. Given that astrocytes play a major role in early synaptogenesis and are implicated in ALS pathogenesis, their potential contribution to disease mechanisms involving synaptic imbalances and subsequent hyperexcitability is also of great interest.

View Article and Find Full Text PDF

The size principle is a key mechanism governing the orderly recruitment of motor units and is believed to be dependent on passive properties of the constituent motoneurons. However, motoneurons are endowed with voltage-sensitive ion channels that create non-linearities in their input-output functions. Here we describe a role for the M-type potassium current, conducted by KCNQ channels, in the control of motoneuron recruitment in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Amyotrophic Lateral Sclerosis (ALS) involves the loss of motor neurons, which may be linked to changes in synapses related to TDP-43 protein issues.
  • The study used advanced microscopy techniques to investigate the presence and distribution of pTDP-43 in excitatory synapses in the spinal cord of mice.
  • Findings showed that pTDP-43 is present in about half of spinal cord synapses, primarily concentrated in those connected to VGLUT1 presynaptic terminals, and there was no observable difference in its expression between ALS-afflicted mice and healthy controls.
View Article and Find Full Text PDF
Article Synopsis
  • ALS is a deadly neurodegenerative disease that involves abnormal changes in synapses and astrocytes, with the hypothesis that specialized tripartite synapses may be central to its pathology.
  • Research using microscopy in ALS model mice and human spinal tissue shows significant synaptic changes early in disease progression, particularly the loss of complex postsynaptic structures and tripartite synapses.
  • The findings indicate that the selective loss of tripartite synapses is a critical feature of ALS, suggesting a new potential target for understanding and treating the disease.
View Article and Find Full Text PDF

Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles.

View Article and Find Full Text PDF

Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form 'tripartite synapses', can modulate neural circuits and impact on synaptic organisation.

View Article and Find Full Text PDF

Evidence suggests that astrocytes are not merely supportive cells in the nervous system but may actively participate in the control of neural circuits underlying cognition and behavior. In this study, we examined the role of astrocytes within the motor circuitry of the mammalian spinal cord. Pharmacogenetic manipulation of astrocytic activity in isolated spinal cord preparations obtained from neonatal mice revealed astrocyte-derived, adenosinergic modulation of the frequency of rhythmic output generated by the locomotor central pattern generator (CPG) network.

View Article and Find Full Text PDF

Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear.

View Article and Find Full Text PDF

Astrocytes modulate many neuronal networks, including spinal networks responsible for the generation of locomotor behavior. Astrocytic modulation of spinal motor circuits involves release of ATP from astrocytes, hydrolysis of ATP to adenosine, and subsequent activation of neuronal A adenosine receptors (ARs). The net effect of this pathway is a reduction in the frequency of locomotor-related activity.

View Article and Find Full Text PDF

Unlabelled: Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice.

View Article and Find Full Text PDF

The molecular features of synapses in the hippocampus underpin current models of learning and cognition. Although synapse ultra-structural diversity has been described in the canonical hippocampal circuitry, our knowledge of sub-synaptic organisation of synaptic molecules remains largely unknown. To address this, mice were engineered to express Post Synaptic Density 95 protein (PSD95) fused to either eGFP or mEos2 and imaged with two orthogonal super-resolution methods: gated stimulated emission depletion (g-STED) microscopy and photoactivated localisation microscopy (PALM).

View Article and Find Full Text PDF

Enteric glia cells (EGCs) form a dense network around myenteric neurons in a ganglia and are likely to have not only a supportive role but may also regulate or be regulated by neural activity. Our aims were to determine if EGCs are activated during the colonic migrating motor complex (CMMC) in the isolated murine colon. Strips of longitudinal muscle were removed and Ca(2+) imaging (Fluo-4) used to study activity in EGCs within myenteric ganglia during CMMCs, followed by post hoc S100 staining to reveal EGCs.

View Article and Find Full Text PDF