Facial infra-red imaging (IRI) is a contact-free technique complimenting the traditional psychophysiological measures to characterize physiological profile. However, its full potential in affective research is arguably unmet due to the analytical challenges it poses. Here we acquired facial IRI data, facial expressions and traditional physiological recordings (heart rate and skin conductance) from healthy human subjects whilst they viewed a 20-min-long unedited emotional movie.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Classification of seizure type is a key step in the clinical process for evaluating an individual who presents with seizures. It determines the course of clinical diagnosis and treatment, and its impact stretches beyond the clinical domain to epilepsy research and the development of novel therapies. Automated identification of seizure type may facilitate understanding of the disease, and seizure detection and prediction have been the focus of recent research that has sought to exploit the benefits of machine learning and deep learning architectures.
View Article and Find Full Text PDFA key component of the flexibility and complexity of the brain is its ability to dynamically adapt its functional network structure between integrated and segregated brain states depending on the demands of different cognitive tasks. Integrated states are prevalent when performing tasks of high complexity, such as maintaining items in working memory, consistent with models of a global workspace architecture. Recent work has suggested that the balance between integration and segregation is under the control of ascending neuromodulatory systems, such as the noradrenergic system, via changes in neural gain (in terms of the amplification and non-linearity in stimulus-response transfer function of brain regions).
View Article and Find Full Text PDFThermal Imaging (Infrared-Imaging-IRI) is a promising new technique for psychophysiological research and application. Unlike traditional physiological measures (like skin conductance and heart rate), it is uniquely contact-free, substantially enhancing its ecological validity. Investigating facial regions and subsequent reliable signal extraction from IRI data is challenging due to head motion artefacts.
View Article and Find Full Text PDFCognitive function relies on a dynamic, context-sensitive balance between functional integration and segregation in the brain. Previous work has proposed that this balance is mediated by global fluctuations in neural gain by projections from ascending neuromodulatory nuclei. To test this hypothesis in silico, we studied the effects of neural gain on network dynamics in a model of large-scale neuronal dynamics.
View Article and Find Full Text PDFComputational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems.
View Article and Find Full Text PDF