The functional properties of proteorhodopsin (PR) have been found to be strongly modulated by oligomeric distributions and lipid membrane mimetics. This study aims to distinguish and explain their effects by investigating how oligomer formation impacts PR's function of proton transport in lipid-based membrane mimetic environments. We find that PR forms stable hexamers and pentamers in both E.
View Article and Find Full Text PDFThe protein catalyzed capture agent (PCC) method is a powerful combinatorial screening strategy for discovering synthetic macrocyclic peptide ligands, called PCCs, to designated protein epitopes. The foundational concept of the PCC method is the use of in situ click chemistry to survey large combinatorial libraries of peptides for ligands to designated biological targets. State-of-the-art PCC screens integrate synthetic libraries of constrained macrocyclic peptides with epitope-specific targeting strategies to identify high-affinity (<100 nM) binders de novo.
View Article and Find Full Text PDFPlasmodium falciparum is the most lethal species of malaria. In infected human red blood cells, P. falciparum digests hemoglobin as a nutrient source, liberating cytotoxic free heme in the process.
View Article and Find Full Text PDFThe diverse functionalities of membrane proteins (MPs) have garnered much interest in leveraging these biomolecules for technological applications. One challenge of studying MPs in artificial micellar surfactant environments is that many factors modulate their structures and functionalities, including the surfactants that interact with the MP or their assembly into oligomers. As oligomerization offers a means by which MPs could selectively interact among the copious environmental factors in biological environments, we hypothesized that MP function is predominantly modified by oligomerization rather than interactions with local surfactants that, by comparison, largely interact with MPs nonspecifically.
View Article and Find Full Text PDFProtein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors.
View Article and Find Full Text PDFA versatile synthetic protocol is reported that allows high concentrations of functionally active membrane proteins to be incorporated in mesostructured silica materials. Judicious selections of solvent, surfactant, silica precursor species, and synthesis conditions enable membrane proteins to be stabilized in solution and during subsequent coassembly into silica-surfactant composites with nano- and mesoscale order. This was demonstrated by using a combination of nonionic ( n-dodecyl-β-d-maltoside or Pluronic P123), lipid-like (1,2-diheptanoyl- s n-glycero-3-phosphocholine), and perfluoro-octanoate surfactants under mild acidic conditions to coassemble the light-responsive transmembrane protein proteorhodopsin at concentrations up to 15 wt % into the hydrophobic regions of worm-like mesostructured silica materials in films.
View Article and Find Full Text PDFThe structures and properties of membrane proteins in lipid bilayers are expected to closely resemble those in native cell-membrane environments, although they have been difficult to elucidate. By performing solid-state NMR measurements at very fast (100 kHz) magic-angle spinning rates and at high (23.5 T) magnetic field, severe sensitivity and resolution challenges are overcome, enabling the atomic-level characterization of membrane proteins in lipid environments.
View Article and Find Full Text PDFCation-π interactions drive the self-assembly and cohesion of many biological molecules, including the adhesion proteins of several marine organisms. Although the origin of cation-π bonds in isolated pairs has been extensively studied, the energetics of cation-π-driven self-assembly in molecular films remains uncharted. Here we use nanoscale force measurements in combination with solid-state NMR spectroscopy to show that the cohesive properties of simple aromatic- and lysine-rich peptides rival those of the strong reversible intermolecular cohesion exhibited by adhesion proteins of marine mussel.
View Article and Find Full Text PDFPractical applications of chemical and biological detections through surface-enhanced Raman scattering (SERS) require high reproducibility, sensitivity, and efficiency, along with low-cost, straightforward fabrication. In this work, we integrated a poly-(dimethylsiloxane) (PDMS) chip with quasi-3D gold plasmonic nanostructure arrays (Q3D-PNAs), which serve as SERS-active substrates, into an optofluidic microsystem for online sensitive and reproducible SERS detections. The Q3D-PNA PDMS chip was fabricated through soft lithography to ensure both precision and low-cost fabrication.
View Article and Find Full Text PDFThe performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene.
View Article and Find Full Text PDFThe outer membrane of a bacterium is composed of chemical and biological components that carry specific molecular information related to strains, growth stages, expressions to stimulation, and maybe even geographic differences. In this work, we demonstrate that the biochemical information embedded in the outer membrane can be used for rapid detection and identification of pathogenic bacteria using surface-enhanced Raman spectroscopy (SERS). We used seven different strains of the marine pathogen Vibrio parahaemolyticus as a model system.
View Article and Find Full Text PDFThe local electric field distribution and the effect of surface-enhanced Raman spectroscopy (SERS) were investigated on the quasi-3D (Q3D) plasmonic nanostructures formed by gold nanohole and nanodisc array layers physically separated by a dielectric medium. The local electric fields at the top gold nanoholes and bottom gold nanodiscs as a function of the dielectric medium, substrate, and depth of Q3D plasmonic nanostructures upon the irradiation of a 785 nm laser were calculated using the three-dimensional finite-difference time-domain (3D-FDTD) method. The intensity of the maximum local electric fields was shown to oscillate with the depth and the stronger local electric fields occurring at the top or bottom gold layer strongly depend on the dielectric medium, substrate, and depth of the nanostructure.
View Article and Find Full Text PDF