Publications by authors named "Matthew Hutzler"

Fraction unbound (f) is a critical drug distribution parameter commonly utilized for modeling efficacious dosage and safety margin predictions. An over-estimation of f for 13 chemically diverse small molecule drugs primarily bound to alpha-1-acid glycoprotein (AAG) in human plasma was discovered when in vitro results from our screening lab were compared to literature values. Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to be used in the manufacture of blood collection bags, was extracted from plasma obtained through three common techniques that allowed contact with DEHP, and drug f values in plasma from each collection method were estimated using the HTDialysis protein binding methodology.

View Article and Find Full Text PDF

Metabolic profiles of four drugs possessing diverse metabolic pathways (timolol, meloxicam, linezolid, and XK469) were compared following incubations in both suspended cryopreserved human hepatocytes and the HREL hepatocyte coculture model. In general, minimal metabolism was observed following 4-hour incubations in both suspended hepatocytes and the HREL model, whereas incubations conducted up to 7 days in the HREL coculture model resulted in more robust metabolic turnover. In the case of timolol, in vivo human data suggest that 22% of the dose is transformed via multistep oxidative opening of the morpholine moiety.

View Article and Find Full Text PDF

Structure activity relationship (SAR) investigation of an oxadiazole based series led to the discovery of several potent FLAP inhibitors. Lead optimization focused on achieving functional activity while improving physiochemical properties and reducing hERG inhibition. Several compounds with favorable in vitro and in vivo properties were identified that were suitable for advanced profiling.

View Article and Find Full Text PDF

1. Failure to predict human pharmacokinetics of aldehyde oxidase (AO) substrates using traditional allometry has been attributed to species differences in AO metabolism. 2.

View Article and Find Full Text PDF

Over the years, significant progress has been made in reducing metabolic instability due to cytochrome P450-mediated oxidation. High-throughput metabolic stability screening has enabled the advancement of compounds with little to no oxidative metabolism. Furthermore, high lipophilicity and low aqueous solubility of presently pursued chemotypes reduces the probability of renal excretion.

View Article and Find Full Text PDF

In vitro assays using liver subcellular fractions or suspended hepatocytes for characterizing the metabolism of drug candidates play an integral role in the optimization strategy employed by medicinal chemists. However, conventional in vitro assays have limitations in their ability to predict clearance and generate metabolites for low-turnover (slowly metabolized) drug molecules. Due to a rapid loss in the activity of the drug-metabolizing enzymes, in vitro incubations are typically performed for a maximum of 1 hour with liver microsomes to 4 hours with suspended hepatocytes.

View Article and Find Full Text PDF

The synthesis, structure-activity relationship (SAR), and evolution of a novel series of oxadiazole-containing 5-lipoxygenase-activating protein (FLAP) inhibitors are described. The use of structure-guided drug design techniques provided compounds that demonstrated excellent FLAP binding potency (IC50 < 10 nM) and potent inhibition of LTB4 synthesis in human whole blood (IC50 < 100 nM). Optimization of binding and functional potencies, as well as physicochemical properties resulted in the identification of compound 69 (BI 665915) that demonstrated an excellent cross-species drug metabolism and pharmacokinetics (DMPK) profile and was predicted to have low human clearance.

View Article and Find Full Text PDF

BIBX1382 was an epidermal growth factor receptor inhibitor under clinical investigation for treatment of cancer. This candidate possessed an attractive preclinical absorption, distribution, metabolism, and excretion profile, yet failed in clinical studies due in part to poor oral exposure, resulting from extensive metabolism by aldehyde oxidase (AO). In vitro metabolism studies were performed in liver cytosol and cryopreserved hepatocytes from multiple species.

View Article and Find Full Text PDF

Studies were conducted to evaluate the impact of time and cryopreservation on aldehyde oxidase (AO) activity in human hepatocytes isolated from 10 donor livers, using O(6)-benzylguanine as a probe substrate. In addition, variability in activity was assessed using cryopreserved hepatocytes from 75 donors. Substantial donor-dependent loss in AO activity within 24 hours after isolation of hepatocytes was observed (average loss of 42%, range 15%-81%).

View Article and Find Full Text PDF

The current studies assessed the utility of freshly plated hepatocytes, cryopreserved plated hepatocytes, and cryopreserved plated HepaRG cells for the estimation of inactivation parameters k(inact) and K(I) for CYP3A. This was achieved using a subset of CYP3A time-dependent inhibitors (fluoxetine, verapamil, clarithromycin, troleandomycin, and mibefradil) representing a range of potencies. The estimated k(inact) and K(I) values for each time-dependent inhibitor were compared with those obtained using human liver microsomes and used to estimate the magnitude of clinical pharmacokinetic drug-drug interaction (DDI).

View Article and Find Full Text PDF

Substrates of aldehyde oxidase (AO), for which human clinical pharmacokinetics are reported, were selected and evaluated in pooled mixed-gender cryopreserved human hepatocytes in an effort to quantitatively characterize AO activity. Estimated hepatic clearance (Cl(h)) for BIBX1382, carbazeran, O⁶-benzylguanine, zaleplon, and XK-469 using cryopreserved hepatocytes was 18, 17, 12, <4.3, and <4.

View Article and Find Full Text PDF

We describe the systematic optimization, focused on the improvement of CV-TI, of a series of CCR2 antagonists. This work resulted in the identification of 10 (((1S,3R)-1-isopropyl-3-((3S,4S)-3-methoxy-tetrahydro-2H-pyran-4-ylamino)cyclopentyl)(4-(5-(trifluoromethyl)pyridazin-3-yl)piperazin-1-yl)methanone) which possessed a low projected human dose 35-45mg BID and a CV-TI=3800-fold.

View Article and Find Full Text PDF

The metabolism of the 5-lipoxygenase inhibitor, 4-(3-(4-(2-methyl-1H-imidazol-1-yl)phenylthio)phenyl)-tetrahydro-2H-pyran-4-carboxamide (CJ-13,610), was investigated in liver microsomes from human and preclinical species in an effort to compare metabolite profiles and evaluate the in vitro-in vivo correlation for metabolic clearance. Overall, the metabolite profile of CJ-13,610 was comparable across the species tested with multiple oxidative metabolites observed, including sulfoxidation. The sulfoxidation kinetics characterized in rat, dog, and human liver microsomes (HLM) indicated a low apparent Michaelis-Menten constant (K(m, app)) of 4 to 5 microM.

View Article and Find Full Text PDF

1-Aminobenzotriazole (1-ABT) is generally considered to be a nonselective mechanism-based inactivator of both human and non-human cytochrome P450 (P450) enzymes. Thus, 1-ABT is routinely used when conducting in vitro reaction phenotyping studies with new chemical entities in drug discovery to decipher P450 from non-P450-mediated metabolism. Experiments with pooled human liver microsomes (HLMs) demonstrated that carbon monoxide binding, although substantially reduced after a 30-min preincubation with 1-ABT, was still measurable.

View Article and Find Full Text PDF

In vitro experiments were conducted to compare k(inact), K(I) and inactivation efficiency (k(inact)/K(I)) of cytochrome P450 (P450) 2C9 by tienilic acid and (+/-)-suprofen using (S)-flurbiprofen, diclofenac, and (S)-warfarin as reporter substrates. Although the inactivation of P450 2C9 by tienilic acid when (S)-flurbiprofen and diclofenac were used as substrates was similar (efficiency of approximately 9 ml/min/micromol), the inactivation kinetics were characterized by a sigmoidal profile. (+/-)-Suprofen inactivation of (S)-flurbiprofen and diclofenac hydroxylation was also described by a sigmoidal profile, although inactivation was markedly less efficient (approximately 1 ml/min/micromol).

View Article and Find Full Text PDF

PH-302 ( 1) demonstrates potent inhibitory activity against the inducible form of nitric oxide synthase (iNOS). The primary metabolite of PH-302 is a catechol ( 2) resulting from oxidative demethylenation of the methylenedioxyphenyl moiety by cytochrome P450 3A4. Concerns regarding subsequent two-electron oxidation of 2 to an electrophilic quinone species and the potential for resulting toxicity prompted additional studies to examine the reactivity and metabolic fate of this metabolite.

View Article and Find Full Text PDF

The visible spectrum of a ligand-bound cytochrome P450 is often used to determine the nature of the interaction between the ligand and the P450. One particularly characteristic form of spectra arises from the coordination of nitrogen-containing ligands to the P450 heme iron. These type II ligands tend to be inhibitors because they stabilize the low reduction potential P450 and prevent oxygen binding to the heme.

View Article and Find Full Text PDF

PH-302 inhibits the inducible form of nitric oxide synthase (iNOS) by coordinating with the heme of the monomeric form and preventing formation of the active dimer. Inherent with the mechanism of pharmacology for this compound was the inhibition of cytochrome P450 3A4 (P450 3A4), observed from early ADME screening. Further investigation showed that PH-302 inhibited P450 3A4 competitively with a Ki of approximately 2.

View Article and Find Full Text PDF

The application of atmospheric pressure desorption/ionization on silicon (AP-DIOS) coupled with ion trap mass spectrometry (ITMS) was investigated for the quantification of midazolam in rat plasma, and determination of midazolam 1'-hydroxylation kinetics in pooled human liver microsomes. Results indicate good sensitivity with absolute detection limits for midazolam in rat plasma of approximately 300 femtograms. A linear dynamic range from approximately 10-5000 ng/mL was obtained in rat plasma with analysis times of 1 min per sample.

View Article and Find Full Text PDF

7-Methoxy-4-trifluoromethylcoumarin (MFC) has been used extensively in high-throughput screens for the identification of potential CYP2C9 interactions. More recently, additional probes from Invitrogen have been used. Vivid 2C9 Green is the largest of the probes and has had limited prior characterization.

View Article and Find Full Text PDF

The metabolism of pyrene to hydroxypyrene by CYP3A4 was investigated to determine the effect of cytochrome b5 (b5) on turnover kinetics. In the absence of b5, formation of hydroxypyrene in in vitro incubations showed a biphasic substrate-velocity curve where K(m1) and V(max1) were 1.3 microM and 0.

View Article and Find Full Text PDF

Pressure on drug discovery research teams to identify successful drug candidates earlier on in the drug discovery process has led to the development of a variety of ADME in vitro assays, intended to guide chemists and biologists in their decision-making process. The role of these early assays is to indicate liabilities in scaffolds relating to the absorption, distribution, metabolism and cytochrome P450 (CYP) inhibition potential of new chemical entities. Current efforts in drug-drug interaction (DDI) screening can be divided into four basic categories: bioanalytical method development, strategies relating to enzyme kinetics, recognition of CYP allelic variants and generation of computational models to predict CYP interactions.

View Article and Find Full Text PDF

St. John's wort extract (SJW) (Hypericum perforatum L.) is among the most commonly used herbal medications in the United States.

View Article and Find Full Text PDF

The kinetics for inactivation of cytochrome P450 2D6 by (1-[(2-ethyl-4-methyl-1H-imidazol-5-yl)methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP) were characterized, and the mechanism was determined in an effort to understand the observed time-based inactivation. Loss of dextromethorphan O-demethylase activity following coincubation with EMTPP followed pseudo-first-order kinetics and was both NADPH- and EMTPP-dependent. Inactivation was characterized by an apparent Ki of 5.

View Article and Find Full Text PDF

Studies were designed to investigate various anions and their effects on cytochrome P450 2D6-mediated metabolism in vitro. Incubations were initially performed in buffered phosphate, carbonate, sulfate, and acetate solutions (50mM, pH 7.4), with CYP2D6 substrates dextromethorphan, 7-methoxy-4-(aminomethyl)-coumarin (MAMC), (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride [(-)-OSU6162], and amitriptyline.

View Article and Find Full Text PDF