Next-generation synchrotron radiation facilities, such as the Advanced Photon Source Upgrade (APS-U), bring significant advancements in scientific research capabilities, necessitating advanced diagnostic tools. Central to these diagnostics are x-ray wavefront sensors, crucial for preserving beam properties, including brightness, coherence, and stability. This paper presents two novel wavefront sensor prototypes developed at the APS using the coded-mask-based technique.
View Article and Find Full Text PDFWe describe the application of an AI-driven system to autonomously align complex x-ray-focusing mirror systems, including mirrors systems with variable focus spot sizes. The system has been developed and studied on a digital twin of nanofocusing X-ray beamlines, built using advanced optical simulation tools calibrated with wavefront sensing data collected at the beamline.We experimentally demonstrated that the system is reliably capable of positioning a focused beam on the sample, both by simulating the variation of a beamline with random perturbations due to typical changes in the light source and optical elements over time, and by conducting similar tests on an actual focusing mirror system.
View Article and Find Full Text PDFA neural-network machine learning model is developed to control a bimorph adaptive mirror to achieve and preserve aberration-free coherent X-ray wavefronts at synchrotron radiation and free electron laser beamlines. The controller is trained on a mirror actuator response directly measured at a beamline with a real-time single-shot wavefront sensor, which uses a coded mask and wavelet-transform analysis. The system has been successfully tested on a bimorph deformable mirror at the 28-ID IDEA beamline of the Advanced Photon Source at Argonne National Laboratory.
View Article and Find Full Text PDFThe stacking sequence of hexagonal close-packed and related crystals typically results in steps on vicinal {0001} surfaces that have alternating A and B structures with different growth kinetics. However, because it is difficult to experimentally identify which step has the A or B structure, it has not been possible to determine which has faster adatom attachment kinetics. Here we show that in situ microbeam surface X-ray scattering can determine whether A or B steps have faster kinetics under specific growth conditions.
View Article and Find Full Text PDFSolid-phase epitaxy (SPE) and other three-dimensional epitaxial crystallization processes pose challenging structural and chemical characterization problems. The concentration of defects, the spatial distribution of elastic strain, and the chemical state of ions each vary with nanoscale characteristic length scales and depend sensitively on the gas environment and elastic boundary conditions during growth. The lateral or three-dimensional propagation of crystalline interfaces in SPE has nanoscale or submicrometer characteristic distances during typical crystallization times.
View Article and Find Full Text PDFSide-bounce beamlines with fixed-exit angles have been intended to operate with only one selected energy. However, a tunable monochromator in a new geometry is presented here that will make side-bounce beamlines energy tunable. It requires the addition of two more rotations.
View Article and Find Full Text PDFIn anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory to obtain the beam divergence and thus coherence length.
View Article and Find Full Text PDFWe describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
View Article and Find Full Text PDFDynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition.
View Article and Find Full Text PDFNovel X-ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full-field hard X-ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub-nanometer height sensitivity. Sub-second X-ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample.
View Article and Find Full Text PDFIn developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments.
View Article and Find Full Text PDFWe show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond time scales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.
View Article and Find Full Text PDFPolarization switching in ferroelectrics has been thought to occur only through the nucleation and growth of new domains. Here we use in situ synchrotron x-ray scattering to monitor switching controlled by applied chemical potential. In sufficiently thin PbTiO₃ films, nucleation is suppressed and switching occurs by a continuous mechanism, i.
View Article and Find Full Text PDFThis Feature Article reviews recent work on an optical technique for fabricating, in a single exposure step, three-dimensional (3D) nanostructures with diverse structural layouts. The approach, which we refer to as proximity field nanopatterning, uses conformable, elastomeric phase masks to pattern thick layers of transparent, photosensitive materials in a conformal contact mode geometry. Aspects of the optics, the materials, and the physical chemistry associated with this method are outlined.
View Article and Find Full Text PDFThis paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 microm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 microm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together with optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures.
View Article and Find Full Text PDF