Publications by authors named "Matthew Hackbart"

Article Synopsis
  • Arenaviruses, which are transmitted by rodents and cause severe hemorrhagic fever in humans, currently lack effective antivirals and vaccines, prompting research into new ways to inhibit their replication.
  • The study discovers that arenaviruses produce deletions in the intergenic region of their small RNA genome that can inhibit the production of viral glycoproteins, especially in conditions that enhance viral interference.
  • These findings suggest that the natural interfering molecules generated by arenaviruses could be leveraged as a basis for developing new antiviral treatments targeting multiple strains within the arenavirus family.
View Article and Find Full Text PDF

Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SGs) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the mitochondrial antiviral signaling (MAVS) pathway and antiviral immunity during Sendai virus (SeV) and respiratory syncytial virus (RSV) infections.

View Article and Find Full Text PDF

Arenaviruses, a family of negative-sense RNA viruses spread by rodents, are a leading cause of severe hemorrhagic fever in humans. Due to a paucity of antivirals and vaccines for arenaviruses, there is a need to identify new mechanisms for interfering with arenavirus replication. In several negative-sense RNA viruses, natural viral interference results from the production of non-standard viral genomes (nsVGs) that activate the innate immune system and/or compete for essential viral products.

View Article and Find Full Text PDF

During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years, exposing a need for bioinformatic tools that can accurately identify them within next-generation sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm 2 (VODKA2), that is optimized to run on a parallel computing environment for fast and accurate detection of nsVGs from large data sets.

View Article and Find Full Text PDF

Antiviral responses are often accompanied by translation inhibition and formation of stress granules (SG) in infected cells. However, the triggers for these processes and their role during infection remain subjects of active investigation. Copy-back viral genomes (cbVGs) are the primary inducers of the Mitochondrial Antiviral Signaling (MAVS) pathway and antiviral immunity during Sendai Virus (SeV) and Respiratory Syncytial virus (RSV) infections.

View Article and Find Full Text PDF

During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years exposing a need for bioinformatic tools that can accurately identify them within Next-Generation Sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm2 (VODKA2), that is optimized to run on a High Performance Computing (HPC) environment for fast and accurate detection of nsVGs from large data sets.

View Article and Find Full Text PDF

Understanding the magnitude of responses to vaccination during the ongoing SARS-CoV-2 pandemic is essential for ultimate mitigation of the disease. Here, we describe a cohort of 102 subjects (70 COVID-19-naïve, 32 COVID-19-experienced) who received two doses of one of the mRNA vaccines (BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna)). We document that a single exposure to antigen via infection or vaccination induces a variable antibody response which is affected by age, gender, race, and co-morbidities.

View Article and Find Full Text PDF
Article Synopsis
  • * The coronavirus 3C-like protease (3CLpro) is a key target for antiviral drug development, as it is essential for the virus's replication process.
  • * A new luminescence-based biosensor assay has been developed to test small molecule inhibitors of the SARS-CoV-2 3CLpro, along with a rabbit antiserum that can identify both SARS-CoV and SARS-CoV-2 proteases, aiding in pre-clinical testing of potential treatments.
View Article and Find Full Text PDF

Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5'-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis.

View Article and Find Full Text PDF

Coronaviruses (CoVs) encode multiple interferon (IFN) antagonists that modulate the host response to virus replication. Here, we evaluated the host transcriptional response to infection with murine coronaviruses encoding independent mutations in one of two different viral antagonists, the deubiquitinase (DUB) within nonstructural protein 3 or the endoribonuclease (EndoU) within nonstructural protein 15. We used transcriptomics approaches to compare the scope and kinetics of the host response to the wild-type (WT), DUBmut, and EndoUmut viruses in infected macrophages.

View Article and Find Full Text PDF

Coronaviruses express a multifunctional papain-like protease, termed papain-like protease 2 (PLP2). PLP2 acts as a protease that cleaves the viral replicase polyprotein and as a deubiquitinating (DUB) enzyme which removes ubiquitin (Ub) moieties from ubiquitin-conjugated proteins. Previous studies implicated PLP2/DUB activity as a negative regulator of the host interferon (IFN) response, but the role of DUB activity during virus infection was unknown.

View Article and Find Full Text PDF

Background: Kawasaki disease (KD) is the leading cause of childhood acquired heart disease in developed nations and can result in coronary artery aneurysms and death. Clinical and epidemiologic features implicate an infectious cause but specific antigenic targets of the disease are unknown. Peripheral blood plasmablasts are normally highly clonally diverse but the antibodies they encode are approximately 70% antigen-specific 1-2 weeks after infection.

View Article and Find Full Text PDF
Article Synopsis
  • Coronaviruses produce double-stranded RNA (dsRNA) during replication but can avoid detection by the host's immune system, particularly through the actions of a protein called nsp15.
  • Research on two mutant coronaviruses lacking functional nsp15 showed poor replication and increased cell death in macrophages, leading to an enhanced immune response.
  • The study suggests that targeting nsp15 could lead to the development of live-attenuated vaccines as it plays a critical role in helping coronaviruses evade immune sensors.
View Article and Find Full Text PDF