Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium . We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria.
View Article and Find Full Text PDFUnlabelled: Elevated intracellular levels of the bacterial second messenger c-di-GMP are known to suppress motility and promote sessility. Bacterial chemotaxis guides motile cells in gradients of attractants and repellents over broad concentration ranges, thus allowing bacteria to quickly adapt to changes in their surroundings. Here, we describe a chemotaxis receptor that enhances, as opposed to suppresses, motility in response to temporary increases in intracellular c-di-GMP.
View Article and Find Full Text PDFDynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking.
View Article and Find Full Text PDFThe Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood.
View Article and Find Full Text PDFObjective: The authors aimed to gain information on (1) the challenges for recovering students on a university campus and (2) the most helpful components of a collegiate recovery program.
Participants: The 15 students in the study were all in recovery from substance abuse. They entered the university and also entered the campus recovery program either in fall 2002 or fall 2003.
The ability of microbes to rapidly sense and adapt to environmental changes plays a major role in structuring microbial communities, in affecting microbial activities, as well as in influencing various microbial interactions with the surroundings. The bacterial chemotaxis signal transduction system is the sensory perception system that allows motile cells to respond optimally to changes in environmental conditions by allowing cells to navigate in gradients of diverse physicochemical parameters that can affect their metabolism. The analysis of complete genome sequences from microorganisms that occupy diverse ecological niches reveal the presence of multiple chemotaxis pathways and a great diversity of chemoreceptors with novel sensory specificities.
View Article and Find Full Text PDF