Many patients treated for head and neck cancers experience salivary gland hypofunction due to radiation damage. Understanding the mechanisms of cellular damage induced by radiation treatment is important in order to design methods of radioprotection. In addition, it is crucial to recognize the indirect effects of irradiation and the systemic responses that may alter saliva secretion.
View Article and Find Full Text PDFProgress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands.
View Article and Find Full Text PDFRadiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands.
View Article and Find Full Text PDFTo develop treatments for salivary gland dysfunction, it is important to understand how human salivary glands are maintained under normal homeostasis. Previous data from our lab demonstrated that murine salivary acinar cells maintain the acinar cell population through self-duplication under conditions of homeostasis, as well as after injury. Early studies suggested that human acinar cells are mitotically active, but the identity of the resultant daughter cells was not clear.
View Article and Find Full Text PDFObjective: The objective of this study was to characterize the mechanism by which salivary gland cells (SGC) aggregate in vitro.
Design: Timelapse microscopy was utilized to analyze the process of salivary gland aggregate formation using both primary murine and human salivary gland cells. The role of cell density, proliferation, extracellular calcium, and secretory acinar cells in aggregate formation was investigated.