Publications by authors named "Matthew H Foreman"

Compensatory movements at the trunk are commonly utilized during reaching by persons with motor impairments due to neurological injury such as stroke. Recent low-cost motion sensors may be able to measure trunk compensation, but their validity and reliability for this application are unknown. The purpose of this study was to compare the first (K1) and second (K2) generations of the Microsoft Kinect to a video motion capture system (VMC) for measuring trunk compensation during reaching.

View Article and Find Full Text PDF

Compensatory movement, such as flexing the trunk during reaching, may negatively affect motor improvement during task-based practice for persons with stroke. Shaping, or incrementally decreasing, the amount of compensation used during rehabilitation may be a viable strategy with methods using virtual reality. A virtual reality tool was designed to (1) monitor upper extremity movement kinematics with an off-the-shelf motion sensor (Microsoft Kinect V2), (2) convert movements into control of widely available computer games, and (3) provide real-time feedback to shape trunk compensation.

View Article and Find Full Text PDF

Purpose: Studies have shown that marker-less motion detection systems, such as the first generation Kinect (Kinect 1), have good reliability and potential for clinical application. Studies of the second generation Kinect (Kinect 2) have shown a large range of accuracy relative to balance and joint localization; however, few studies have investigated the validity and reliability of the Kinect 2 for upper extremity motion. This investigation compared reliability and validity among the Kinect 1, Kinect 2 and a video motion capture (VMC) system for upper extremity movements.

View Article and Find Full Text PDF

Introduction: Improving gait speed and kinematics can be a time consuming and tiresome process. We hypothesize that incorporating virtual reality videogame play into variable improvement goals will improve levels of enjoyment and motivation and lead to improved gait performance.

Purpose: To develop a feasible, engaging, VR gait intervention for improving gait variables.

View Article and Find Full Text PDF

ABSTRACT Children with cerebral palsy (CP) are likely to experience decreased participation in activities and less competence in activities of daily living. Studies of children with spastic CP have shown that strengthening programs produce positive results in strength, gait, and functional outcomes (measured by the Gross Motor Function Measure). No investigations have analyzed electromyography (EMG) activity before and after strength training to determine whether any changes occur in the GMFM.

View Article and Find Full Text PDF