Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases.
View Article and Find Full Text PDFCaudo-rostral migration of pathological forms of α-synuclein from the gut to the brain is proposed as an early feature in Parkinson's disease pathogenesis, but the underlying mechanisms remain unknown. Intestinal epithelial enteroendocrine cells sense and respond to numerous luminal signals, including bacterial factors, and transmit this information to the brain via the enteric nervous system and vagus nerve. There is evidence that gut bacteria composition and their metabolites change in Parkinson's disease patients, and these alterations can trigger α-synuclein pathology in animal models of the disorder.
View Article and Find Full Text PDFHeterozygous variants in GBA1, encoding glucocerebrosidase (GCase), are the most common genetic risk factor for Parkinson's disease (PD). Moreover, sporadic PD patients also have a substantial reduction of GCase activity. Genetic variants of SMPD1 are also overrepresented in PD cohorts, whereas a reduction of its encoded enzyme (acid sphingomyelinase or ASM) activity is linked to an earlier age of PD onset.
View Article and Find Full Text PDFSequence variants or mutations in the GBA gene are numerically the most important risk factor for Parkinson disease (PD). The GBA gene encodes for the lysosomal hydrolase enzyme, glucocerebrosidase (GCase). GBA mutations often reduce GCase activity and lead to the impairment of the autophagy-lysosomal pathway, which is important in the turnover of alpha-synuclein, accumulation of which is a key pathological hallmark of PD.
View Article and Find Full Text PDFDysfunction of the endolysosomal system is implicated in the pathogenesis of both sporadic and familial Parkinson disease (PD). Variants in genes encoding lysosomal proteins have been estimated to be associated with more than half of PD cases. The most common genetic risk factor for PD are variants in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism.
View Article and Find Full Text PDFCognitive impairment is a common non-motor complication of Parkinson's disease (PD). Glucocerebrosidase gene (GBA1) variants are found in 10-15% of PD cases and are numerically the most important risk factor for PD and dementia with Lewy bodies. Accumulation of α-synuclein and tau pathology is thought to underlie cognitive impairment in PD and likely involves cholinergic as well as dopaminergic neurons.
View Article and Find Full Text PDFMutations in the GBA gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are the most important genetic risk factor for Parkinson disease (PD). GCase activity is also decreased in sporadic PD brains and with normal ageing. Loss of GCase activity impairs the autophagy lysosomal pathway resulting in increased α-synuclein (α-syn) levels.
View Article and Find Full Text PDFGlucocerebrosidase () mutations are the most important genetic risk factor for the development of Parkinson disease (PD). encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear.
View Article and Find Full Text PDFThe presence of GBA1 gene mutations increases risk for Parkinson's disease (PD), but the pathogenic mechanisms of GBA1 associated PD remain unknown. Given that impaired α-synuclein turnover is a hallmark of PD pathogenesis and cathepsin D is a key enzyme involved in α-synuclein degradation in neuronal cells, we have examined the relationship of glucocerebrosidase (GCase), cathepsin D and monomeric α-synuclein in human neural crest stem cell derived dopaminergic neurons. We found that normal activity of GCase is necessary for cathepsin D to perform its function of monomeric α-synuclein removal from neurons.
View Article and Find Full Text PDFBi-allelic mutations in the glucocerebrosidase gene (GBA1) cause Gaucher's disease, the most common human lysosomal storage disease. We previously reported a marked increase in miR-155 transcript levels and early microglial activation in a zebrafish model of Gaucher's disease (gba1). miR-155 is a master regulator of inflammation and has been implicated in a wide range of different neurodegenerative disorders.
View Article and Find Full Text PDFGBA encodes the lysosomal enzyme glucocerebrosidase (GCase), an enzyme involved in sphingolipid metabolism. Mutations in the GBA gene are numerically the most important risk factor for developing Parkinson disease (PD) accounting for at least 5% of all PD cases. Furthermore, loss of GCase activity is found in sporadic PD brains.
View Article and Find Full Text PDFDJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson's disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline.
View Article and Find Full Text PDFGlucocerebrosidase (GBA1) mutations are associated with Gaucher disease (GD), an autosomal recessive disorder caused by functional deficiency of glucocerebrosidase (GBA), a lysosomal enzyme that hydrolyzes glucosylceramide to ceramide and glucose. Neuronopathic forms of GD can be associated with rapid neurological decline (Type II) or manifest as a chronic form (Type III) with a wide spectrum of neurological signs. Furthermore, there is now a well-established link between GBA1 mutations and Parkinson's disease (PD), with heterozygote mutations in GBA1 considered the commonest genetic defect in PD.
View Article and Find Full Text PDFGBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated.
View Article and Find Full Text PDFGlucocerebrosidase (GBA1) gene mutations increase the risk of Parkinson disease (PD). While the cellular mechanisms associating GBA1 mutations and PD are unknown, loss of the glucocerebrosidase enzyme (GCase) activity, inhibition of autophagy and increased α-synuclein levels have been implicated. Here we show that autophagy lysosomal reformation (ALR) is compromised in cells lacking functional GCase.
View Article and Find Full Text PDFMutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca(2+) release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in β-glucocerebrosidase.
View Article and Find Full Text PDFImpairment of the autophagy-lysosome pathway is implicated with the changes in α-synuclein and mitochondrial dysfunction observed in Parkinson's disease (PD). Damaged mitochondria accumulate PINK1, which then recruits parkin, resulting in ubiquitination of mitochondrial proteins. These can then be bound by the autophagic proteins p62/SQSTM1 and LC3, resulting in degradation of mitochondria by mitophagy.
View Article and Find Full Text PDFThe lysosomal hydrolase glucocerebrosidase (GCase) is encoded for by the GBA gene. Homozygous GBA mutations cause Gaucher disease (GD), a lysosomal storage disorder. Furthermore, homozygous and heterozygous GBA mutations are numerically the greatest genetic risk factor for developing Parkinson's disease (PD), the second most common neurodegenerative disorder.
View Article and Find Full Text PDFAutosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher's disease (GD). Heterozygous GBA1 mutations (GBA1(+/-)) are the most common risk factor for Parkinson's disease (PD). Previous studies typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1(+/-) carriers and alpha-synuclein-mediated neurotoxicity.
View Article and Find Full Text PDFBackground: To establish whether Parkinson's disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme's substrate, glucosylceramide, or other changes in lipid composition.
Methods: Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5-7) and cerebellum (n = 7-14) of controls, Parkinson's disease brains with heterozygote GBA1 mutations (PD+GBA), or sporadic PD.
Results: Total glucosylceramide levels were unchanged in both PD+GBA and sporadic PD brains when compared with controls.