Rationale: Although polysubstance use is highly prevalent, preclinical studies that assess voluntary consumption of multiple substances at the same time are rather uncommon. Overlooking drug taking patterns commonly observed in humans may limit the translational value of preclinical models.
Objectives: Here, we aimed to develop a model of polysubstance use that could be used to assess oral operant self-administration patterns under concurrent access to alcohol and the prescription opioid oxycodone.
Background: While there is high comorbidity of stress-related disorders and alcohol use disorder, few effective treatments are available and elucidating underlying neurobiological mechanisms has been hampered by a general lack of reliable animal models. Here, we use a novel mouse model demonstrating robust and reproducible stress-enhanced alcohol drinking to examine the role of dynorphin/kappa opioid receptor (DYN/KOR) activity within the extended amygdala in mediating this stress-alcohol interaction.
Methods: Mice received repeated weekly cycles of chronic intermittent ethanol exposure alternating with weekly drinking sessions ± forced swim stress exposure.
Aims: Alcohol is the most commonly abused substance leading to significant economic and medical burdens. Pigs are an attractive model for studying alcohol abuse disorder due to the comparable alcohol metabolism and consumption behavior, which are in stark contrast to rodent models. This study investigates the usage of a porcine model for voluntary binge drinking (BD) and a detailed analysis of gait changes due to motor function deficits during alcohol intoxication.
View Article and Find Full Text PDFBackground: Comorbidity between alcoholism and depression is extremely common. Recent evidence supports a relationship between alcohol exposure and stress sensitivity, an underlying factor in the development of depression. Our laboratory has recently shown that chronic alcohol gavage increases sensitivity to social defeat stress (SDS).
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) expression and signaling activity in brain are influenced by chronic ethanol and stress. We previously demonstrated reduced Bdnf mRNA levels in the medial prefrontal cortex (mPFC) following chronic ethanol treatment and forced swim stress (FSS) enhanced escalated drinking associated with chronic ethanol exposure. The present study examined the effects of chronic ethanol and FSS exposure, alone and in combination, on Bdnf mRNA expression in different brain regions, including mPFC, central amygdala (CeA), and hippocampus (HPC).
View Article and Find Full Text PDFThe neurotrophin Brain-Derived Neurotrophic Factor (BDNF) has been implicated in a number of neuropsychiatric disorders, including alcohol use disorder. Studies have shown that BDNF activity in cortical regions, such as the medial prefrontal cortex (mPFC) mediates various ethanol-related behaviors. We previously reported a significant down-regulation in Bdnf mRNA in mPFC following chronic ethanol exposure compared to control mice.
View Article and Find Full Text PDFBackground: Liver inflammation in alcoholism has been hypothesized to influence the development of a neuroinflammatory process in the brain characterized by neurodegeneration and altered cognitive function. Monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 (MCP-1/CCL2) elevations have been noted in the alcoholic brain at autopsy and may have a role in this process.
Methods: We studied cerebrospinal fluid (CSF) levels of MCP-1 as well as interleukin-1β and tumor necrosis factor-α in 13 healthy volunteers and 28 alcoholics during weeks 1 and 4 following detoxification.
Background: Genetic deletion or antagonism of the neurokinin 1 receptor (NK1R) decreases alcohol intake, alcohol reward, and stress-induced alcohol relapse in rodents, while TACR1 variation is associated with alcoholism in humans.
Methods: We used L822429, a specific antagonist with high affinity for the rat NK1R, and examined whether sensitivity to NK1R blockade is altered in alcohol-preferring (P) rats. Operant alcohol self-administration and progressive ratio responding were analyzed in P-rats and their founder Wistar line.