We describe the design, synthesis, and structure-activity relationship (SAR) of heterobifunctional RET ligand-directed degraders (LDDs) derived from three different second-generation RET inhibitors. These LDDs are composed of a target binding motif (TBM) that binds to the RET protein, a linker, and a cereblon binding motif (CBM) as the E3 ligase recognition unit. This led to the identification of a series of pyrazolopyridine-based heterobifunctional LDDs, as exemplified by compound .
View Article and Find Full Text PDFPurpose: In cancer immunotherapy, the blockade of the interaction between programmed death-1 and its ligand (PD-1:PD-L1) has proven to be one of the most promising strategies. However, as mechanisms of resistance to PD-1/PD-L1 inhibition include variability in tumor cell PD-L1 expression in addition to standard tumor biopsy PD-L1 immunohistochemistry (IHC), a comprehensive and quantitative approach for measuring PD-L1 expression is required. Herein, we report the development and characterization of an F-PD-L1-binding macrocyclic peptide as a PET tracer for the comprehensive evaluation of tumor PD-L1 expression in cancer patients.
View Article and Find Full Text PDFPurpose: A same-day PET imaging agent capable of measuring PD-L1 status in tumors is an important tool for optimizing PD-1 and PD-L1 treatments. Herein we describe the discovery and evaluation of a novel, fluorine-18 labeled macrocyclic peptide-based PET ligand for imaging PD-L1.
Methods: [F]BMS-986229 was synthesized via copper mediated click-chemistry to yield a PD-L1 PET ligand with picomolar affinity and was tested as an in-vivo tool for assessing PD-L1 expression.
BMS-932481 was designed to modulate ɣ-secretase activity to produce shorter and less amyloidogenic peptides, potentially averting liabilities associated with complete enzymatic inhibition. Although it demonstrated the intended pharmacology in the clinic, BMS-932481 unexpectedly caused drug-induced liver injury (DILI) in a multiple ascending dose study characterized by dose- and exposure-dependence, delayed onset manifestation, and a high incidence of hepatocellular damage. Retrospective studies investigating the disposition and probable mechanisms of toxicity of BMS-932481 are presented here.
View Article and Find Full Text PDFWhile several farnesoid X receptor (FXR) agonists under clinical investigation for the treatment of nonalcoholic steatohepatitis (NASH) have shown beneficial effects, adverse effects such as pruritus and elevation of plasma lipids have limited their clinical efficacy and approvability. Herein, we report the discovery and preclinical evaluation of compound (BMS-986339), a nonbile acid FXR agonist with a pharmacologically distinct profile relative to our previously reported agonist BMS-986318. Compound exhibited potent in vitro and in vivo activation of FXR, albeit with a context-dependent profile that resulted in tissue-selective effects in vivo.
View Article and Find Full Text PDFThe oxycyclohexyl acid BMS-986278 () is a potent lysophosphatidic acid receptor 1 (LPA) antagonist, with a human LPA of 6.9 nM. The structure-activity relationship (SAR) studies starting from the LPA antagonist clinical compound BMS-986020 (), which culminated in the discovery of , are discussed.
View Article and Find Full Text PDFHerein we report the discovery and preclinical biological evaluation of 6-(2-(5-cyclopropyl-3-(3,5-dichloropyridin-4-yl)isoxazol-4-yl)-7-azaspiro[3.5]non-1-en-7-yl)-4-(trifluoromethyl)quinoline-2-carboxylic acid, compound (BMS-986318), a nonbile acid farnesoid X receptor (FXR) agonist. Compound exhibits potent in vitro and in vivo activation of FXR, has a suitable ADME profile, and demonstrates efficacy in the mouse bile duct ligation model of liver cholestasis and fibrosis.
View Article and Find Full Text PDFIn solving the P-gp and BCRP transporter-mediated efflux issue in a series of benzofuran-derived pan-genotypic palm site inhibitors of the hepatitis C virus NS5B replicase, it was found that close attention to physicochemical properties was essential. In these compounds, where both molecular weight (MW >579) and TPSA (>110 Å) were high, attenuation of polar surface area together with weakening of hydrogen bond acceptor strength of the molecule provided a higher intrinsic membrane permeability and more desirable Caco-2 parameters, as demonstrated by trifluoroacetamide and the benchmark -ethylamino analog . In addition, the tendency of these inhibitors to form intramolecular hydrogen bonds potentially contributes favorably to the improved membrane permeability and absorption.
View Article and Find Full Text PDF3-Aryl-indole and 3-aryl-indazole derivatives were identified as potent and selective Na1.7 inhibitors. Compound 29 was shown to be efficacious in the mouse formalin assay and also reduced complete Freund's adjuvant (CFA)-induced thermal hyperalgesia and chronic constriction injury (CCI) induced cold allodynia and models of inflammatory and neuropathic pain, respectively, following intraperitoneal (IP) doses of 30 mg/kg.
View Article and Find Full Text PDFSince zwitterionic benzenesulfonamide Na1.7 inhibitors suffer from poor membrane permeability, we sought to eliminate this characteristic by replacing the basic moiety with non-basic bicyclic acetals and monocyclic ethers. These efforts led to the discovery of the non-zwitterionic aryl sulfonamide 49 as a selective Na1.
View Article and Find Full Text PDFIterative structure-activity analyses in a class of highly functionalized furo[2,3-]pyridines led to the identification of the second generation pan-genotypic hepatitis C virus NS5B polymerase primer grip inhibitor BMT-052 (), a potential clinical candidate. The key challenge of poor metabolic stability was overcome by strategic incorporation of deuterium at potential metabolic soft spots. The preclinical profile and status of BMT-052 () is described.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile.
View Article and Find Full Text PDFBy taking advantage of certain features in piperidine 4, we developed a novel series of cyclohexylamine- and piperidine-based benzenesulfonamides as potent and selective Na1.7 inhibitors. However, compound 24, one of the early analogs, failed to reduce phase 2 flinching in the mouse formalin test even at a dose of 100 mpk PO due to insufficient dorsal root ganglion (DRG) exposure attributed to poor membrane permeability.
View Article and Find Full Text PDFThe development of a series of novel 7-azabenzofurans exhibiting pan-genotype inhibition of HCV NS5B polymerase binding to the primer grip site is presented. Many challenges, including poor oral bioavailability, high clearance, bioactivation, high human serum shift, and metabolic stability were encountered and overcome through SAR studies. This work culminated in the selection of BMS-986139 () as a preclinical candidate.
View Article and Find Full Text PDFRationale: It is well known that the organic anion transporting polypeptide 1B1 (OATP1B1) plays a major role in the hepatic uptake of a range of drugs. To this end, it is pivotal that the potential for new molecular entities (NMEs) to inhibit OATP1B1 activity be assessed during early drug discovery. The work reported herein describes the development of a high-throughput analytical method to measure the clinically relevant probe substrate, pitavastatin, for the in vitro assessment of OATP1B1 inhibition.
View Article and Find Full Text PDFThe efficacy of positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 4 (mGlu4) in preclinical rodent models of Parkinson's disease has been established by a number of groups. Here, we report an advanced preclinically characterized mGlu4 PAM, N-(3-chloro-4-fluorophenyl)-1H-pyrazolo[4,3-b]pyridin-3-amine (VU0418506). We detail the discovery of VU0418506 starting from a common picolinamide core scaffold and evaluation of a number of amide bioisosteres leading to the novel pyrazolo[4,3-b]pyridine head group.
View Article and Find Full Text PDFDuring a medicinal chemistry campaign to identify inhibitors of the hepatitis C virus nonstructural protein 5B (RNA-dependent RNA polymerase), a bicyclo[1.1.1]pentane was introduced into the chemical scaffold to improve metabolic stability.
View Article and Find Full Text PDFAsunaprevir (ASV; BMS-650032), a low nanomolar inhibitor of the hepatitis C virus (HCV) NS3 protease, is currently under development, in combination with other direct-acting antiviral (DAA) agents for the treatment of chronic HCV infection. Extensive nonclinical and pharmacokinetic studies have been conducted to characterize the ADME properties of ASV. ASV has a moderate to high clearance in preclinical species.
View Article and Find Full Text PDFThe study presented here identified and utilized a panel of solubility enhancing excipients to enable the generation of flux data in the Human colon carcinoma (Caco-2) system for compounds with poor solubility. Solubility enhancing excipients Dimethyl acetamide (DMA) 1 % v/v, polyethylene glycol (PEG) 400 1% v/v, povidone 1% w/v, poloxamer 188 2.5% w/v and bovine serum albumin (BSA) 4% w/v did not compromise Caco-2 monolayer integrity as assessed by trans-epithelial resistance measurement (TEER) and Lucifer yellow (LY) permeation.
View Article and Find Full Text PDFOrganic anion transporting polypeptide (Oatp) 1a/1b knockout and OATP1B1 and -1B3 humanized mouse models are promising tools for studying the roles of these transporters in drug disposition. Detailed characterization of these models will help to better understand their utility for predicting clinical outcomes. To advance this approach, we carried out a comprehensive analysis of these mouse lines by evaluating the compensatory changes in mRNA expression, quantifying the amounts of OATP1B1 and -1B3 protein by liquid chromatography-tandem mass spectrometry, and studying the active uptake in isolated hepatocytes and the pharmacokinetics of some prototypical substrates including statins.
View Article and Find Full Text PDF1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance.
View Article and Find Full Text PDFThe bile salt export pump (BSEP) is located on the canalicular plasma membrane of hepatocytes and plays an important role in the biliary clearance of bile acids (BAs). Therefore, any drug or new chemical entity that inhibits BSEP has the potential to cause cholestasis and possibly liver injury. In reality, however, one must consider the complexity of the BA pool, BA enterohepatic recirculation (EHR), extrahepatic (renal) BA clearance, and the interplay of multiple participant transporters and enzymes (e.
View Article and Find Full Text PDFTransporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.
View Article and Find Full Text PDFThe pivotal role of organic anion-transporting polypeptide 1B1 (OATP1B1) in drug disposition has become clear over the last decade. Therefore, an OATP1B1 inhibition assay suitable for use within early drug discovery was developed and characterized. IC(50) estimates for 10 literature compounds using pitavastatin and estradiol-17β-glucuronide as substrates were within 2-fold of each other.
View Article and Find Full Text PDF