Associative memories enjoy many interesting properties in terms of error correction capabilities, robustness to noise, storage capacity, and retrieval performance, and their usage spans over a large set of applications. In this letter, we investigate and extend tournament-based neural networks, originally proposed by Jiang, Gripon, Berrou, and Rabbat (2016), a novel sequence storage associative memory architecture with high memory efficiency and accurate sequence retrieval. We propose a more general method for learning the sequences, which we call feedback tournament-based neural networks.
View Article and Find Full Text PDFClique-based neural associative memories introduced by Gripon and Berrou (GB), have been shown to have good performance, and in our previous work we improved the learning capacity and retrieval rate by local coding and precoding in the presence of partial erasures. We now take a step forward and consider nested-clique graph structures for the network. The GB model stores patterns as small cliques, and we here replace these by nested cliques.
View Article and Find Full Text PDFTechniques from coding theory are able to improve the efficiency of neuroinspired and neural associative memories by forcing some construction and constraints on the network. In this letter, the approach is to embed coding techniques into neural associative memory in order to increase their performance in the presence of partial erasures. The motivation comes from recent work by Gripon, Berrou, and coauthors, which revisited Willshaw networks and presented a neural network with interacting neurons that partitioned into clusters.
View Article and Find Full Text PDF