Methods Mol Biol
January 2023
Lissencephaly ('smooth brain') is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease - lissencephaly-1 (LIS1) - has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development.
View Article and Find Full Text PDFDynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity.
View Article and Find Full Text PDFCytoplasmic dynein plays critical roles within the developing and mature nervous systems, including effecting nuclear migration, and retrograde transport of various cargos. Unsurprisingly, mutations in dynein are causative of various developmental neuropathies and motor neuron diseases. These 'dyneinopathies' define a broad spectrum of diseases with no known correlation between mutation identity and disease state.
View Article and Find Full Text PDFCytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast.
View Article and Find Full Text PDFEncapsulation of unstable guests is a powerful way to enhance their stability. The lifetimes of organic anions and their radicals produced by reduction are typically short on account of reactivity with oxygen while their larger sizes preclude use of traditional anion receptors. Here we demonstrate the encapsulation and noncovalent stabilization of organic radical anions by C-H hydrogen bonding in π-stacked pairs of cyanostar macrocycles having large cavities.
View Article and Find Full Text PDFThe existence of two rings in [3]pseudorotaxanes presents opportunities for those rings to undergo double switching and cooperative mechanical coupling. To investigate this capability, we identified a new strategy for bringing two rings into contact with each other and conducted mechanistic studies to reveal their kinetic cooperativity. A redox-active tetrazine ligand bearing two binding sites was selected to allow for two mobile copper(I) macrocycle ring moieties to come together.
View Article and Find Full Text PDF