Purpose: Toxicities associated with stereotactic radiosurgery (SRS) are important when considering treatment and supportive management for patients with brain metastases. We herein assessed the association between brain metastasis location and risk of toxicity after SRS.
Methods: We conducted a retrospective institutional review of patients treated with SRS for brain metastases between 2008 and 2023.
Objective: Visual, tactile, and auditory cues are used during surgery to differentiate tissue type. Auditory cues in glioma surgery have not been studied previously. The objectives of this study were 1) to evaluate the feasibility of recording sound generated by the suction device during glioma surgery in matched tissue samples, and 2) to characterize the acoustic variation that occurs in different tissue samples.
View Article and Find Full Text PDFImportance: Glioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed.
Objective: To investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma.
There is a paucity of data on comparative outcomes for open versus endoscopic surgery for patients with malignant sinonasal pathology. Most of the available studies are limited by a sample size <100 patients. This is a retrospective cohort study.
View Article and Find Full Text PDFBackground: High tumor-infiltrating lymphocytes (TILs) and hemorrhage are important prognostic factors in patients who have undergone craniotomy for melanoma brain metastases (MBM) before 2011 at the University of Pittsburgh Medical Center (UPMC). We have investigated the prognostic or predictive role of these histopathologic factors in a more contemporary craniotomy cohort from the University of North Carolina at Chapel Hill (UNC-CH). We have also sought to understand better how various immune cell subsets, angiogenic factors, and blood vessels may be associated with clinical and radiographic features in MBM.
View Article and Find Full Text PDFObjective/hypothesis: To characterize the pathology and outcomes of skull base surgery in the pediatric population by open versus endoscopic surgical approach.
Study Design: Retrospective cohort study.
Methods: A retrospective review of pediatric patients (<18 years) who underwent skull base surgery for nonmalignant disease from May 2000 to August 2019 was performed.
The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM).
View Article and Find Full Text PDFPre-clinical and clinical studies have shown that engineered tumoricidal neural stem cells (tNSCs) are a promising treatment strategy for the aggressive brain cancer glioblastoma (GBM). Yet, stabilizing human tNSCs within the surgical cavity following GBM resection is a significant challenge. As a critical step toward advancing engineered human NSC therapy for GBM, we used a preclinical variant of the clinically utilized NSC line HB1.
View Article and Find Full Text PDFPituitary tumors are rare but are associated with significant symptoms that impact patients' quality of life (QOL). Surgery remains one of the most effective treatment options for long term disease control and symptom benefit, but symptom, and quality of life recovery in the subacute period has not been previously reported. This study aimed to better understand the impact of surgery on patients' symptom burden and QOL in the subacute post-surgical period.
View Article and Find Full Text PDFBackground: Cytotoxic neural stem cells (NSCs) have emerged as a promising treatment for Medulloblastoma (MB), the most common malignant primary pediatric brain tumor. The lack of accurate pre-clinical models incorporating surgical resection and tumor recurrence limits advancement in post-surgical MB treatments. Using cell lines from two of the 5 distinct MB molecular sub-groups, in this study, we developed an image-guided mouse model of MB surgical resection and investigate intra-cavity NSC therapy for post-operative MB.
View Article and Find Full Text PDFFollowing publication of the original article [1], the authors reported an error in the spelling of one of the author names. In this Correction the incorrect and correct author names are indicated and the author name has been updated in the original publication. The authors also reported an error in the Methods section of the original article.
View Article and Find Full Text PDFBackground: Standard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax-L) to standard therapy for newly diagnosed glioblastoma.
Methods: After surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99).
Objectives: The objectives of this study were to demonstrate the safety of auditory brainstem implant (ABI) surgery and document the subsequent development of auditory and spoken language skills in children without neurofibromatosis type II (NFII).
Design: A prospective, single-subject observational study of ABI in children without NFII was undertaken at the University of North Carolina at Chapel Hill. Five children were enrolled under an investigational device exemption sponsored by the investigators.
Background: Given the wide adoption of human epidermal growth factor receptor 2 (HER2)-targeted therapies for advanced HER2-positive breast cancer, we studied the natural history of patients with HER2-positive breast cancer brain metastases (BCBM) over time.
Patients And Methods: Patients with HER2-positive BCBM identified from a prospectively maintained database at the University of North Carolina were divided into 3 cohorts by year of BCBM diagnosis. Cohorts were selected by year of HER2-targeted therapy US Food and Drug Administration approval.
Background: Glioma-associated macrophages and microglia (GAMs) are components of the glioblastoma (GBM) microenvironment that express MerTK, a receptor tyrosine kinase that triggers efferocytosis and can suppress innate immune responses. The aim of the study was to define MerTK as a therapeutic target using an orally bioavailable inhibitor, UNC2025.
Methods: We examined MerTK expression in tumor cells and macrophages in matched patient GBM samples by double-label immunohistochemistry.
Stereotactic radiotherapy (SRT) is the standard treatment for patients with limited number of brain metastases. In the past few years, newer immunotherapies (immune checkpoint inhibitors) have been proven to prolong survival in patients with metastatic melanoma. The safety of the combination of SRT and immunotherapy for brain metastases is unknown.
View Article and Find Full Text PDFMutations in isocitrate dehydrogenase () are the most prevalent genetic abnormalities in lower grade gliomas. The presence of these mutations in glioma is prognostic for better clinical outcomes with longer patient survival. In the present study, we found that defects in oxidative metabolism and 2-HG production confer chemosensitization in IDH1-mutated glioma cells.
View Article and Find Full Text PDFEngineered neural stem cells (NSCs) are a promising approach to treating glioblastoma (GBM). The ideal NSC drug carrier for clinical use should be easily isolated and autologous to avoid immune rejection. We transdifferentiated (TD) human fibroblasts into tumor-homing early-stage induced NSCs (h-iNSC), engineered them to express optical reporters and different therapeutic gene products, and assessed the tumor-homing migration and therapeutic efficacy of cytotoxic h-iNSC in patient-derived GBM models of surgical and nonsurgical disease.
View Article and Find Full Text PDFOncology (Williston Park)
October 2016
This review summarizes the most up-to-date approach to the multidisciplinary management of patients with breast cancer brain metastases. A brief overview of the epidemiology and biology of breast cancer brain metastasis is provided. The perspectives of radiation oncology, neurosurgery, and medical oncology-and landmark studies from each discipline-are all discussed.
View Article and Find Full Text PDFThe incidence of breast cancer brain metastasis (BCBM) is increasing due in part to improved management of systemic disease and prolonged survival. Despite this growing population of patients, there exists little consensus for the treatment of HER2-positive BCBM. Lapatinib, the only brain permeable targeted agent for HER2-positive cancer, has demonstrated limited intracranial response rates and little improvement in progression free survival (PFS) for HER-2 positive patients.
View Article and Find Full Text PDFBackground: Glioma stem cells (GSCs) from human glioblastomas (GBMs) are resistant to radiation and chemotherapy and may drive recurrence. Treatment efficacy may depend on GSCs, expression of DNA repair enzymes such as methylguanine methyltransferase (MGMT), or transcriptome subtype.
Methods: To model genetic alterations in human GBM core signaling pathways, we induced Rb knockout, Kras activation, and Pten deletion mutations in cortical murine astrocytes.
Background: Breast cancer brain metastasis (BCBM) confers a poor prognosis and is unusual in requiring multidisciplinary care in the metastatic setting. The University of North Carolina at Chapel Hill (UNC-CH) has created a BCBM clinic to provide medical and radiation oncology, neurosurgical, and supportive services to this complex patient population. We describe organization and design of the clinic as well as characteristics, treatments, and outcomes of the patients seen in its first 3 years.
View Article and Find Full Text PDF"Endoscopic endonasal skull base surgery has dramatically changed and expanded over recent years due to significant advancements in instrumentation, techniques, and anatomic understanding. With these advances, the need for more robust skull base reconstructive techniques was vital. In this article, reconstructive options ranging from acellular grafts to vascular flaps are described, including the strengths, weaknesses, and common uses.
View Article and Find Full Text PDF