Electrical impedance tomography is clinically used to trace ventilation related changes in electrical conductivity of lung tissue. Estimating regional pulmonary perfusion using electrical impedance tomography is still a matter of research. To support clinical decision making, reliable bedside information of pulmonary perfusion is needed.
View Article and Find Full Text PDFObjective: The aim of this study was to compare the effects of combined virtual monoenergetic extrapolation (VME) of dual-energy computed tomography data and iterative metal artifact reduction (iMAR) at higher photon energies on low- and high-density metal artifacts and overall image quality of the ankle arthroplasty implants with iMAR, weighted filtered back projection (WFBP), and WFBP-based VME.
Materials And Methods: Total ankle arthroplasty implants in 6 human cadaver ankles served as surrogates for arthroplasty implants. All specimens underwent computed tomography with a 2 × 192-slice dual-source computed tomography scanner at tube voltages of 80 and tin-filtered 150 kVp to produce mixed 120 kVp equivalent polychromatic and virtual monoenergetic extrapolated images at 150 and 190 keV (VME 150 and VME 190, respectively).
Objectives: A novel imaging technique ("X-map") has been developed to identify acute ischemic lesions for stroke patients using non-contrast-enhanced dual-energy computed tomography (NE-DE-CT). Using the 3-material decomposition technique, the original X-map ("X-map 1.0") eliminates fat and bone from the images, suppresses the gray matter (GM)-white matter (WM) tissue contrast, and makes signals of edema induced by severe ischemia easier to detect.
View Article and Find Full Text PDFPancreatic cancer remains a major health problem, and only less than 20% of patients have resectable disease at the time of initial diagnosis. Systemic chemotherapy is often used in the patients with borderline resectable, locally advanced unresectable disease and metastatic disease. CT is often used to assess for therapeutic response; however, conventional imaging including CT may not correctly reflect treatment response after chemotherapy.
View Article and Find Full Text PDFPurpose: Computed Tomography (CT) imaging of the lung, reported in Hounsfield Units (HU), can be parameterized as a quantitative image biomarker for the diagnosis and monitoring of lung density changes due to emphysema, a type of chronic obstructive pulmonary disease (COPD). CT lung density metrics are global measurements based on lung CT number histograms, and are typically a quantity specifying either the percentage of voxels with CT numbers below a threshold, or a single CT number below which a fixed relative lung volume, nth percentile, falls. To reduce variability in the density metrics specified by CT attenuation, the Quantitative Imaging Biomarkers Alliance (QIBA) Lung Density Committee has organized efforts to conduct phantom studies in a variety of scanner models to establish a baseline for assessing the variations in patient studies that can be attributed to scanner calibration and measurement uncertainty.
View Article and Find Full Text PDFTo evaluate the feasibility of using a whole-body photon-counting detector (PCD) CT scanner for low-dose lung cancer screening compared to a conventional energy integrating detector (EID) system. Radiation dose-matched EID and PCD scans of the COPDGene 2 phantom were acquired at different radiation dose levels (CTDI: 3.0, 1.
View Article and Find Full Text PDFGout is a true crystal deposition arthropathy caused by the precipitation of monosodium urate into joints and periarticular soft tissues. It is the most common inflammatory arthropathy in men and women of older age with a male-to-female ratio of 3 to 8:1. The disease may progress from asymptomatic hyperuricemia through symptomatic acute gout attacks with asymptomatic periods into chronic symptomatic tophaceous gout.
View Article and Find Full Text PDFPurpose: To evaluate the performance of a prototype photon-counting detector (PCD) computed tomography (CT) system for abdominal CT in humans and to compare the results with a conventional energy-integrating detector (EID).
Materials And Methods: The study was HIPAA-compliant and institutional review board-approved with informed consent. Fifteen asymptomatic volunteers (seven men; mean age, 58.
Rationale: Endothelial dysfunction is of interest in relation to smoking-associated emphysema, a component of chronic obstructive pulmonary disease (COPD). We previously demonstrated that computed tomography (CT)-derived pulmonary blood flow (PBF) heterogeneity is greater in smokers with normal pulmonary function tests (PFTs) but who have visual evidence of centriacinar emphysema (CAE) on CT.
Objectives: We introduced dual-energy CT (DECT) perfused blood volume (PBV) as a PBF surrogate to evaluate whether the CAE-associated increased PBF heterogeneity is reversible with sildenafil.
Purpose: To demonstrate that a "5DCT" technique which utilizes fast helical acquisition yields the same respiratory-gated images as a commercial technique for regular, mechanically produced breathing cycles.
Methods: Respiratory-gated images of an anesthetized, mechanically ventilated pig were generated using a Siemens low-pitch helical protocol and 5DCT for a range of breathing rates and amplitudes and with standard and low dose imaging protocols. 5DCT reconstructions were independently evaluated by measuring the distances between tissue positions predicted by a 5D motion model and those measured using deformable registration, as well by reconstructing the originally acquired scans.
Iterative reconstruction (IR) methods for x-ray CT is a promising approach to improve image quality or reduce radiation dose to patients. The goal of this work was to use task based image quality measures and the channelized Hotelling observer (CHO) to evaluate both analytic and IR methods for clinical x-ray CT applications. We performed realistic computer simulations at five radiation dose levels, from a clinical reference low dose D0 to 25% D0.
View Article and Find Full Text PDFObjectives: The purpose of this study was to evaluate the impact of ultralow radiation dose single-energy computed tomographic (CT) acquisitions with Sn prefiltration and third-generation iterative reconstruction on density-based quantitative measures of growing interest in phenotyping pulmonary disease.
Materials And Methods: The effects of both decreasing dose and different body habitus on the accuracy of the mean CT attenuation measurements and the level of image noise (SD) were evaluated using the COPDGene 2 test object, containing 8 different materials of interest ranging from air to acrylic and including various density foams. A third-generation dual-source multidetector CT scanner (Siemens SOMATOM FORCE; Siemens Healthcare AG, Erlangen, Germany) running advanced modeled iterative reconstruction (ADMIRE) software (Siemens Healthcare AG) was used.
The pathogenesis of cystic fibrosis (CF) airway disease is not well understood. A porcine CF model was recently generated, and these animals develop lung disease similar to humans with CF. At birth, before infection and inflammation, CF pigs have airways that are irregularly shaped and have a reduced caliber compared to non-CF pigs.
View Article and Find Full Text PDFRationale And Objectives: Accurate assessment of air density used to quantitatively characterize amount and distribution of emphysema in chronic obstructive pulmonary disease (COPD) subjects has remained challenging. Hounsfield units (HU) within tracheal air can be considerably less negative than -1000 HU. This study has sought to characterize the effects of improved scatter correction used in dual-source pulmonary computed tomography (CT).
View Article and Find Full Text PDFValidation studies of electrical impedance tomography (EIT) based assessment of regional ventilation under pathological conditions are required to prove that EIT can reliably quantify heterogeneous ventilation distribution with sufficient accuracy. The objective of our study was to validate EIT measurements of regional ventilation through a comparison with xenon-multidetector-row computed tomography (XeCT) in an animal model of sub-lobar lung injury. Nine anesthetized mechanically ventilated supine pigs were examined before and after the induction of lung injury in two adjacent sub-lobar segments of the right lung by saline lavage or endotoxin instillation.
View Article and Find Full Text PDFPurpose: To evaluate the effects of lung volume differences on apparent diffusion coefficient (ADC) measurements on a regional basis, with breath holds at volumes adjusted for differences in lung size across individuals according to the subject's vital capacity (VC).
Materials And Methods: This study was approved by the local institutional review board and was compliant with HIPAA. Informed consent was obtained from all subjects.
Objective: Dual-energy x-ray computed tomography (DECT) offers visualization of the airways and quantitation of regional pulmonary ventilation using a single breath of inhaled xenon gas. In this study, we sought to optimize scanning protocols for DECT xenon gas ventilation imaging of the airways and lung parenchyma and to characterize the quantitative nature of the developed protocols through a series of test-object and animal studies.
Materials And Methods: The Institutional Animal Care and Use Committee approved all animal studies reported here.
The pig is frequently used as an experimental model for studies of the pulmonary circulation, yet the branching and dimensional geometry of the porcine pulmonary vasculature remains poorly defined. The purposes of this study are to improve the geometric definition of the porcine pulmonary arteries and to determine whether the arterial tree exhibits self-similarity in its branching geometry. Five animals were imaged using thin slice spiral computed tomography in the prone posture during airway inflation pressure at 25 cmH2O.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
The objective of this study was to develop an in vivo CT imaging-based approach for pulmonary arterial morphometry measurement, and to improve the geometrical basis for studies of the porcine vasculature. The luminal diameter and distance from the inlet of left and right pulmonary arteries, and pulmonary arteries within the lungs of two porcine subjects were measured at inflation pressure of 25 cmH(2)O. The results suggest that the porcine pulmonary arteries have geometric self-similarity, and that this approach will have utility for systematically quantifying pulmonary arterial vessel dimensions in vivo in a larger group of animals.
View Article and Find Full Text PDFPurpose: To compare measurements of regional pulmonary perfused blood volume (PBV) and pulmonary blood flow (PBF) obtained with computed tomography (CT) in two pig models.
Materials And Methods: The institutional animal care and use committee approved all animal studies. CT-derived PBF and PBV were determined in four anesthetized, mechanically ventilated, supine swine by using two methods for creating pulmonary parenchymal perfusion heterogeneity.
Purpose: Regional lung volume change as a function of lung inflation serves as an index of parenchymal and airway status as well as an index of regional ventilation and can be used to detect pathologic changes over time. In this paper, the authors propose a new regional measure of lung mechanics-the specific air volume change by corrected Jacobian. The authors compare this new measure, along with two existing registration based measures of lung ventilation, to a regional ventilation measurement derived from xenon-CT (Xe-CT) imaging.
View Article and Find Full Text PDFRationale And Objectives: Multidetector-row computed tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics), and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breathhold at a standardized volume.
Materials And Methods: A computer monitored turbine-based flow meter system was developed to control patient breathholds and facilitate static imaging at fixed percentages of the vital capacity.
Objectives: Sepsis-related lung injury is the most common and morbid form of acute lung injury. The objective of this study was to develop an ovine model of septic acute lung injury and characterize its pathophysiology regarding its recruitability and changes in regional aeration and perfusion distributions at injury and during injury evolution.
Design: Experimental animal study.
The effect of high-frequency oscillatory ventilation (HFOV) settings on the distribution of lung volume (V(L)) with changes in mean airway pressure (Paw), frequency (f(R)) and tidal volume (V(T)) remains controversial. We used computer tomographic (CT) imaging to quantify the distribution of V(L) during HFOV compared to static continuous positive airway pressure (CPAP). In anesthetized, supine canines, CT imaging of the entire lung was performed during CPAP and HFOV at Paw of 5, 12.
View Article and Find Full Text PDF