Publications by authors named "Matthew Frimel"

Article Synopsis
  • Lung mast cells play a key role in protecting the body but their overactivation can lead to chronic issues like asthma.
  • The study reveals that a lung-specific protein called MCEMP1 acts as an adaptor for the KIT protein, enhancing mast cell growth through its interaction with stem cell factor (SCF).
  • Mice lacking MCEMP1 show decreased mast cell growth and reduced inflammation in asthma models, highlighting its importance in lung mast cell proliferation and potential asthma treatment.
View Article and Find Full Text PDF

The current standard for lung function evaluation in murine models is based on forced oscillation technology, which provides a measure of the total airway function but cannot provide information on regional heterogeneity in function. Limited detection of regional airflow may contribute to a discontinuity between airway inflammation and airflow obstruction in models of asthma. Here, we describe quantification of regional airway function using novel dynamic quantitative imaging and analysis to quantify and visualize lung motion and regional pulmonary airflow in four dimensions (4D).

View Article and Find Full Text PDF

Allergic airway disease models use laboratory mice housed in highly controlled and hygienic environments, which provide a barrier between the mice and a predetermined list of specific pathogens excluded from the facility. In this study, we hypothesized that differences in facility barrier level and, consequently, the hygienic quality of the environment that mice inhabit impact the severity of pulmonary inflammation and lung function. Allergen-naive animals housed in the cleaner, high barrier (HB) specific pathogen-free facility had increased levels of inflammatory cytokines and higher infiltration of immune cells in the lung tissue but not in the bronchoalveolar lavage compared with mice housed in the less hygienic, low barrier specific pathogen-free facility.

View Article and Find Full Text PDF

In vascular research, clinical samples and samples from animal models are often used together to foster translation of preclinical findings to humans. General concepts of endothelia and murine-specific endothelial phenotypes were discussed in part 1 of this two part series. Here, in part 2, we present a comprehensive overview of human-specific endothelial phenotypes.

View Article and Find Full Text PDF

The endothelium forms a selective barrier between circulating blood or lymph and surrounding tissue. Endothelial cells play an essential role in vessel homeostasis, and identification of these cells is critical in vascular biology research. However, characteristics of endothelial cells differ depending on the location and type of blood or lymph vessel.

View Article and Find Full Text PDF

Intact cell-free mitochondria have been reported in microparticles (MPs) in murine and human bodily fluids under disease conditions. However, cellular origins of circulating extracellular mitochondria have not been characterized. We hypothesize that intact, cell-free mitochondria from heterogeneous cellular sources are present in the circulation under physiological conditions.

View Article and Find Full Text PDF

Inducible nitric oxide synthase (iNOS) and arginase-2 (ARG2) share a common substrate, arginine. Higher expression of iNOS and exhaled NO are linked to airway inflammation in patients. iNOS deletion in animal models suggests that eosinophilic inflammation is regulated by arginine metabolism.

View Article and Find Full Text PDF

The β-adrenergic receptor (βAR) exists in an equilibrium of inactive and active conformational states, which shifts in response to different ligands and results in downstream signaling. In addition to cAMP, βAR signals to hypoxia-inducible factor 1 (HIF-1). We hypothesized that a βAR-active conformation (R**) that leads to HIF-1 is separable from the cAMP-activating conformation (R*) and that pulmonary arterial hypertension (PAH) patients with HIF-biased conformations would not respond to a cAMP agonist.

View Article and Find Full Text PDF