Publications by authors named "Matthew Ferriter"

The potential use of Yersinia pestis as a bioterror agent is a great concern. Development of a stable powder vaccine against Y. pestis and administration of the vaccine by minimally invasive methods could provide an alternative to the traditional liquid formulation and intramuscular injection.

View Article and Find Full Text PDF

The use of an aerosolizable form of anthrax as a biological weapon is considered to be among the most serious bioterror threats. Intranasal (IN) delivery of a dry powder anthrax vaccine could provide an effective and non-invasive administration alternative to traditional intramuscular (IM) or subcutaneous (SC) injection. We evaluated a dry powder vaccine based on the recombinant Protective Antigen (rPA) of Bacillus anthracis for vaccination against anthrax via IN immunization in a rabbit model.

View Article and Find Full Text PDF

The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (WIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery.

View Article and Find Full Text PDF

The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (VIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery.

View Article and Find Full Text PDF

Anthrax remains a serious threat worldwide as a bioterror agent. A second-generation anthrax vaccine currently under clinical evaluation consists of a recombinant Protective Antigen (rPA) of Bacillus anthracis. We have previously demonstrated that complete protection against inhalational anthrax can be achieved in a rabbit model, by intranasal delivery of a powder rPA formulation.

View Article and Find Full Text PDF

A new anthrax vaccine under clinical investigation is based on recombinant Bacillus anthracis protective antigen (rPA). Here, we investigated microneedle-based cutaneous and nasal mucosal delivery of rPA in mice and rabbits. In mice, intradermal (id) delivery achieved up to 90% seroconversion after a single dose, compared with 20% after intramuscular (im) injection.

View Article and Find Full Text PDF